14 research outputs found
Toxocariasis: a silent threat with a progressive public health impact
Background: Toxocariasis is a neglected parasitic zoonosis that afflicts millions of the pediatric and adolescent populations worldwide, especially in impoverished communities. This disease is caused by infection with the larvae of Toxocara canis and T. cati, the most ubiquitous intestinal nematode parasite in dogs and cats, respectively. In this article, recent advances in the epidemiology, clinical presentation, diagnosis and pharmacotherapies that have been used in the treatment of toxocariasis are reviewed.
Main text: Over the past two decades, we have come far in our understanding of the biology and epidemiology of toxocariasis. However, lack of laboratory infrastructure in some countries, lack of uniform case definitions and limited surveillance infrastructure are some of the challenges that hindered the estimation of global disease burden. Toxocariasis encompasses four clinical forms: visceral, ocular, covert and neural. Incorrect or misdiagnosis of any of these disabling conditions can result in severe health consequences and considerable medical care spending. Fortunately, multiple diagnostic modalities are available, which if effectively used together with the administration of appropriate pharmacologic therapies, can minimize any unnecessary patient morbidity.
Conclusions: Although progress has been made in the management of toxocariasis patients, there remains much work to be done. Implementation of new technologies and better understanding of the pathogenesis of toxocariasis can identify new diagnostic biomarkers, which may help in increasing diagnostic accuracy. Also, further clinical research breakthroughs are needed to develop better ways to effectively control and prevent this serious disease
Sources of variation in milk flow characteristics at udder and quarter levels
The aim of this study was to describe and analyze effects of parity, stage of lactation, milkability (3 groups of cows with differing peak flow rates), time of milking, and quarter position on milk production and milk flow measures at udder and quarter levels. Particular emphasis was put on changes to the decline phase and in duration of overmilking. More than 75,800 quarter milk flow curves and more than 19,300 udder milk flow curves obtained from 38 cows throughout lactation were analyzed. Stage of lactation significantly influenced all studied variables at both udder and quarter levels. At the quarter level, the duration of decline phase and the decline ratio (decline phase as a percentage of milking time) decreased from mo 1 to 2 and then gradually increased as lactation advanced. In contrast, at the udder level, duration of decline phase decreased throughout lactation but beginning at mo 2, the decline ratio increased as lactation advanced. The duration of the overmilking phase of quarters increased from mo 1 to 3 and then decreased in the course of lactation. Parity did not influence peak and average flow rates, the duration of increase phase, or the decline ratio at either udder or quarter levels. All milk flow measures were higher during morning milking except the duration of increase and decline phases at the quarter level and the duration of increase phase at the udder level. Milk yield and the duration of increase phase were not affected by milkability at either level. Quarters from udders with high milkability had longest duration of decline phase and the shortest overmilking phase. Milkability did not influence duration of the decline phase at the udder level. Quarter position influenced all measured variables of milk yield and milk flow. Rear quarters had significantly higher milk yield, longer time of milking, higher peak, and higher average flow rates than front quarters. Front quarters had shorter duration of increase and decline phases than rear quarters. The duration of the overmilking phase was almost double for front quarters. There were also differences in measured flow rates between left or right quarters on respective front or rear positions. Measured characteristics reported in this study may be important in setting default parameters in automated milking systems
Quarter milk flow patterns in dairy cows: factors involved and repeatability
The objectives of our study were to describe the variation of quarter milk flow parameters and to determine the factors that affect these parameters the most. Additionally, repeatabilities (r2) of the quarter milk flow traits (duration of milk flow, time to reach peak flow, peak flow rate, and duration of milk flow in single phases - increase, plateau, decline and blind phase) were calculated. Repeatability of total milk yield and milk yield in single phases was calculated, too. The data from 39 Holstein cows, in their first to third lactation and free of clinical mastitis, were used for statistical analysis. A total of 1 656 curves of quarter milk flows were recorded during six consecutive days. At the last evening and morning milking samples of milk from each quarter were collected for determination of somatic cell count (SCC). Peak flow rate, quarter position, time of milking (morning and evening) and SCC significantly affected most of the measured traits. The highest r2 were for total milk yield and yield of plateau phase 0.53 and 0.50, resp. The lowest r2 were calculated for the duration of increase phase, and milk yield of the increase and blind phase 0.26, 0.12 and 0.21, resp. Peak flow rate, SCC, time of milking and front-rear position influenced the values of r2 of traits to various extent