4,088 research outputs found

    Chapter 3: The Teberan Language Family

    Get PDF

    Observation of Amounts of Movement Practice Provided during Stroke Rehabilitation

    Get PDF
    Objective To investigate how much movement practice occurred during stroke rehabilitation, and what factors might influence doses of practice provided. Design Observational survey of stroke therapy sessions. Setting Seven inpatient and outpatient rehabilitation sites. Participants We observed a convenience sample of 312 physical and occupational therapy sessions for people with stroke. Interventions Not applicable. Main Outcome Measures We recorded numbers of repetitions in specific movement categories and data on potential modifying factors (patient age, side affected, time since stroke, FIM item scores, years of therapist experience). Descriptive statistics were used to characterize amounts of practice. Correlation and regression analyses were used to determine whether potential factors were related to the amount of practice in the 2 important categories of upper extremity functional movements and gait steps. Results Practice of task-specific, functional upper extremity movements occurred in 51% of the sessions that addressed upper limb rehabilitation, and the average number of repetitions/session was 32 (95% confidence interval [CI]=20–44). Practice of gait occurred in 84% of sessions that addressed lower limb rehabilitation and the average number of gait steps/session was 357 (95% CI=296–418). None of the potential factors listed accounted for significant variance in the amount of practice in either of these 2 categories. Conclusions The amount of practice provided during poststroke rehabilitation is small compared with animal models. It is possible that current doses of task-specific practice during rehabilitation are not adequate to drive the neural reorganization needed to promote function poststroke optimally

    Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    Get PDF
    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment

    The Child and Parent Emotion Study: Protocol for a longitudinal study of parent emotion socialisation and child socioemotional development

    Full text link
    Introduction:&nbsp;Parents shape child emotional competence and mental health via their beliefs about children&rsquo;s emotions, emotion-related parenting, the emotional climate of the family and by modelling emotion regulation skills. However, much of the research evidence to date has been based on small samples with mothers of primary school-aged children. Further research is needed to elucidate the direction and timing of associations for mothers and fathers/partners across different stages of child development. The Child and Parent Emotion Study (CAPES) aims to examine longitudinal associations between parent emotion socialisation, child emotion regulation and socioemotional adjustment at four time points from pregnancy to age 12 years. CAPES will investigate the moderating role of parent gender, child temperament and gender, and family background.Methods and analysis:&nbsp;CAPES recruited 2063 current parents from six English-speaking countries of a child 0&ndash;9 years and 273 prospective parents (ie, women/their partners pregnant with their first child) in 2018&ndash;2019. Participants will complete a 20&ndash;30 min online survey at four time points 12 months apart, to be completed in December 2022. Measures include validated parent-report tools assessing parent emotion socialisation (ie, parent beliefs, the family emotional climate, supportive parenting and parent emotion regulation) and age-sensitive measures of child outcomes (ie, emotion regulation and socioemotional adjustment). Analyses will use mixed-effects regression to simultaneously assess associations over three time-point transitions (ie, T1 to T2; T2 to T3; T3 to T4), with exposure variables lagged to estimate how past factors predict outcomes 12 months later.Ethics and dissemination:&nbsp;Ethics approval was granted by the Deakin University Human Research Ethics Committee and the Deakin University Faculty of Health Human Research Ethics Committee. We will disseminate results through conferences and open access publications. We will invite parent end users to co-develop our dissemination strategy, and discuss the interpretation of key findings prior to publication.Trial registeration:&nbsp;Protocol pre-registration: DOI 10.17605/OSF.IO/NGWUY.</jats:sec

    Removing Orbital Debris with Lasers

    Full text link
    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.Comment: 37 pages, 15 figures, in preparation for submission to Advances in Space Researc

    Multicolour correlative imaging using phosphor probes

    Get PDF
    Correlative light and electron microscopy exploits the advantages of optical methods, such as multicolour probes and their use in hydrated live biological samples, to locate functional units, which are then correlated with structural details that can be revealed by the superior resolution of electron microscopes. One difficulty is locating the area imaged by the electron beam in the much larger optical field of view. Multifunctional probes that can be imaged in both modalities and thus register the two images are required. Phosphor materials give cathodoluminescence (CL) optical emissions under electron excitation. Lanthanum phosphate containing thulium or terbium or europium emits narrow bands in the blue, green and red regions of the CL spectrum; they may be synthesised with very uniform-sized crystals in the 10- to 50-nm range. Such crystals can be imaged by CL in the electron microscope, at resolutions limited by the particle size, and with colour discrimination to identify different probes. These materials also give emissions in the optical microscope, by multiphoton excitation. They have been deposited on the surface of glioblastoma cells and imaged by CL. Gadolinium oxysulphide doped with terbium emits green photons by either ultraviolet or electron excitation. Sixty-nanometre crystals of this phosphor have been imaged in the atmospheric scanning electron microscope (JEOL ClairScope). This probe and microscope combination allow correlative imaging in hydrated samples. Phosphor probes should prove to be very useful in correlative light and electron microscopy, as fiducial markers to assist in image registration, and in high/super resolution imaging studies

    Exact solutions for interacting boson systems under rotation

    Full text link
    We study a class of interacting, harmonically trapped boson systems at angular momentum L. The Hamiltonian leaves a L-dimensional subspace invariant, and this permits an explicit solution of several eigenstates and energies for a wide class of two-body interactionsComment: 8 pages, error corrected (concerns generalization of subspace structure
    • …
    corecore