118 research outputs found

    Tuning Polymorphs and Morphology of Microbially Induced Calcium Carbonate: Controlling Factors and Underlying Mechanisms

    Get PDF
    Microbially precipitated calcium carbonate (CaCO3) has drawn broad attention due to its potential applications in various areas, for example, biocementation, medicine, and soil reinforcement. Sporosarcina pasteurii (S. pasteurii), formerly known as Bacillus pasteurii, has been investigated for CaCO3 biomineralization due to its high ureolytic activity. A high degree of supersaturation with respect to the presence of bacterial cell wall, extracellular polymeric substances, and organic byproducts of bacterial activity plays an important role in the formation and stabilization of CaCO3 polymorphs. Although microbially induced CaCO3 and its polymorphs have been investigated broadly, the mechanisms of polymorph selection and morphological evolution are not well understood. This study employs ex situ approaches to address the complication of biomineralization in the presence of living organisms and to elucidate how solution chemistry, bacterial activity, and precipitation kinetics alter the polymorphism and morphology of CaCO3 induced by S. pasteurii. The results indicate that in the presence of enough calcium ions and urea (as a carbonate source), the bacterial activity favors the formation and stabilization of vaterite. The morphological observations also provide valuable information on the particles\u27 microstructure. The morphology of calcite evolves from single crystal to polycrystalline structures, and the morphology of vaterite evolved from spherical to oval-shaped structures on increasing the organic material concentration. Specific functional groups also exert morphological control on CaCO3 polymorphs. However, the sensitivity of the calcite polymorph to the composition and orientation of these functional groups is higher compared to that of the vaterite polymorph. These findings offer important insights that can be used to constrain a set of experimental conditions for synthesizing a certain polymorph ratio for vaterite/calcite or a particular morphology of each polymorph and shed light on the crystallization and phase transformation mechanisms in such complicated bioenvironments

    Arena3D: visualizing time-driven phenotypic differences in biological systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes.</p> <p>Results</p> <p>Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene <it>lsm14a </it>in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets.</p> <p>Conclusions</p> <p>We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: <url>http://arena3d.org/</url>.</p

    Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI

    Get PDF
    Time-resolved 3D velocity-encoded MR imaging with velocity encoding in three directions (4D Flow) has emerged as a novel MR acquisition technique providing detailed information on flow in the cardiovascular system. In contrast to other clinically available imaging techniques such as echo-Doppler, 4D Flow MRI provides the 3D Flow velocity field within a volumetric region of interest over the cardiac cycle. This work reviews the most recent advances in the development and application of dedicated image analysis techniques for the assessment of intra-cardiac flow features from 4D Flow MRI.Novel image analysis techniques have been developed for extraction of relevant intra-cardiac flow features from 4D Flow MRI, which have been successfully applied in various patient cohorts and volunteer studies. Disturbed flow patterns have been linked with valvular abnormalities and ventricular dysfunction. Recent technical advances have resulted in reduced scan times and improvements in image quality, increasing the potential clinical applicability of 4D Flow MRI.4D Flow MRI provides unique capabilities for 3D visualization and quantification of intra-cardiac blood flow. Contemporary knowledge on 4D Flow MRI shows promise for further exploration of the potential use of the technique in research and clinical applications

    Global uncertainty in the diagnosis of neurological complications of SARS-CoV-2 infection by both neurologists and non-neurologists: An international inter-observer variability study

    Get PDF
    Introduction: Uniform case definitions are required to ensure harmonised reporting of neurological syndromes associated with SARS-CoV-2. Moreover, it is unclear how clinicians perceive the relative importance of SARS-CoV-2 in neurological syndromes, which risks under- or over-reporting. Methods: We invited clinicians through global networks, including the World Federation of Neurology, to assess ten anonymised vignettes of SARS-CoV-2 neurological syndromes. Using standardised case definitions, clinicians assigned a diagnosis and ranked association with SARS-CoV-2. We compared diagnostic accuracy and assigned association ranks between different settings and specialties and calculated inter-rater agreement for case definitions as “poor” (κ ≤ 0.4), “moderate” or “good” (κ > 0.6). Results: 1265 diagnoses were assigned by 146 participants from 45 countries on six continents. The highest correct proportion were cerebral venous sinus thrombosis (CVST, 95.8%), Guillain-Barré syndrome (GBS, 92.4%) and headache (91.6%) and the lowest encephalitis (72.8%), psychosis (53.8%) and encephalopathy (43.2%). Diagnostic accuracy was similar between neurologists and non-neurologists (median score 8 vs. 7/10, p = 0.1). Good inter-rater agreement was observed for five diagnoses: cranial neuropathy, headache, myelitis, CVST, and GBS and poor agreement for encephalopathy. In 13% of vignettes, clinicians incorrectly assigned lowest association ranks, regardless of setting and specialty. Conclusion: The case definitions can help with reporting of neurological complications of SARS-CoV-2, also in settings with few neurologists. However, encephalopathy, encephalitis, and psychosis were often misdiagnosed, and clinicians underestimated the association with SARS-CoV-2. Future work should refine the case definitions and provide training if global reporting of neurological syndromes associated with SARS-CoV-2 is to be robust

    Assessment of cardiac remodeling in asymptomatic mitral regurgitation for surgery timing: a comparative study of echocardiography and magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early surgery is recommended for asymptomatic severe mitral regurgitation (MR), because of increased postoperative left ventricular (LV) dysfunction in patients with late surgery. On the other hand, recent reports emphasized a "watchful waiting" process for the determination of the proper time of mitral valve surgery. In our study, we compared magnetic resonance imaging (MRI) and transthoracic echocardiography to evaluate the LV and left atrial (LA) remodeling; for better definitions of patients that may benefit from early valve surgery.</p> <p>Methods</p> <p>Twenty-one patients with moderate to severe asymptomatic MR were evaluated by echocardiography and MRI. LA and LV ejection fractions (EFs) were calculated by echocardiography and MRI. Pulmonary veins (PVs) were measured from vein orifices in diastole and systole from the tangential of an imaginary circle that completed LA wall. Right upper PV indices were calculated with the formula; (Right upper PV diastolic diameter- Right upper PV systolic diameter)/Right upper PV diastolic diameter.</p> <p>Results</p> <p>In 9 patients there were mismatches between echocardiography and MRI measurements of LV EF. LV EFs were calculated ≥60% by echocardiography, meanwhile < 60% by MRI in these 9 patients. Severity of MR evaluated by effective regurgitant orifice area (EROA) didn't differ with preserved and depressed EFs by MRI (p > 0.05). However, both right upper PV indices (0.16 ± 0.06 vs. 0.24 ± 0.08, p: 0.024) and LA EFs (0.19 ± 0.09 vs. 0.33 ± 0.14, p: 0.025) were significantly decreased in patients with depressed EFs when compared to patients with normal EFs.</p> <p>Conclusions</p> <p>MRI might be preferred when small changes in functional parameters like LV EF, LA EF, and PV index are of clinical importance to disease management like asymptomatic MR patients that we follow up for appropriate surgery timing.</p

    Characterization of a Novel Binding Protein for Fortilin/TCTP — Component of a Defense Mechanism against Viral Infection in Penaeus monodon

    Get PDF
    The Fortilin (also known as TCTP) in Penaeus monodon (PmFortilin) and Fortilin Binding Protein 1 (FBP1) have recently been shown to interact and to offer protection against the widespread White Spot Syndrome Virus infection. However, the mechanism is yet unknown. We investigated this interaction in detail by a number of in silico and in vitro analyses, including prediction of a binding site between PmFortilin/FBP1 and docking simulations. The basis of the modeling analyses was well-conserved PmFortilin orthologs, containing a Ca2+-binding domain at residues 76–110 representing a section of the helical domain, the translationally controlled tumor protein signature 1 and 2 (TCTP_1, TCTP_2) at residues 45–55 and 123–145, respectively. We found the pairs Cys59 and Cys76 formed a disulfide bond in the C-terminus of FBP1, which is a common structural feature in many exported proteins and the “x–G–K–K” pattern of the amidation site at the end of the C-terminus. This coincided with our previous work, where we found the “x–P–P–x” patterns of an antiviral peptide also to be located in the C-terminus of FBP1. The combined bioinformatics and in vitro results indicate that FBP1 is a transmembrane protein and FBP1 interact with N-terminal region of PmFortilin

    Cognitive Behavior Therapy for Anxious Adolescents: Developmental Influences on Treatment Design and Delivery

    Get PDF
    Anxiety disorders in adolescence are common and disruptive, pointing to a need for effective treatments for this age group. Cognitive behavior therapy (CBT) is one of the most popular interventions for adolescent anxiety, and there is empirical support for its application. However, a significant proportion of adolescent clients continue to report anxiety symptoms post-treatment. This paper underscores the need to attend to the unique developmental characteristics of the adolescent period when designing and delivering treatment, in an effort to enhance treatment effectiveness. Informed by the literature from developmental psychology, developmental psychopathology, and clinical child and adolescent psychology, we review the ‘why’ and the ‘how’ of developmentally appropriate CBT for anxious adolescents. ‘Why’ it is important to consider developmental factors in designing and delivering CBT for anxious adolescents is addressed by examining the age-related findings of treatment outcome studies and exploring the influence of developmental factors, including cognitive capacities, on engagement in CBT. ‘How’ clinicians can developmentally tailor CBT for anxious adolescents in six key domains of treatment design and delivery is illustrated with suggestions drawn from both clinically and research-oriented literature. Finally, recommendations are made for research into developmentally appropriate CBT for anxious adolescents
    corecore