461 research outputs found

    Theory of interlayer tunneling in bi-layer quantum Hall ferromagnets

    Full text link
    Spielman et al. have recently observed a large zero-bias peak in the tunnel conductance of a bi-layer system in a quantum Hall ferromagnet state. We argue that disorder-induced topological defects in the pseudospin order parameter limit the peak size and destroy the predicted Josephson effect. We predict that the peak would be split and shifted by an in-plane magnetic field in a way that maps the dispersion relation of the ferromagnet's Goldstone mode. We also predict resonant structures in the DC I-V characteristic under bias by an {\em ac} electric field.Comment: 4 pages, no figures, submitted to Physical Review Letter

    Trend-TDT – a transmission/disequilibrium based association test on functional mini/microsatellites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minisatellites and microsatellites are associated with human disease, not only as markers of risk but also involved directly in disease pathogenesis. They may play significant roles in replication, repair and mutation of DNA, regulation of gene transcription and protein structure alteration. Phenotypes can thus be affected by mini/microsatellites in a manner proportional to the length of the allele. Here we propose a new method to assess the linear trend toward transmission of shorter or longer alleles from heterozygote parents to affected child.</p> <p>Results</p> <p>This test (trend-TDT) performs better than other TDT (Transmission/Disequilibrium Test) type tests, such as TDT<sub>max </sub>and TDT<sub>L/S</sub>, under most marker-disease association models.</p> <p>Conclusion</p> <p>The trend-TDT test is a more powerful association test when there is a biological basis to suspect a relationship between allele length and disease risk.</p

    Interaction and filling induced quantum phases of dual Mott insulators of bosons and fermions

    Full text link
    Many-body effects are at the very heart of diverse phenomena found in condensed-matter physics. One striking example is the Mott insulator phase where conductivity is suppressed as a result of a strong repulsive interaction. Advances in cold atom physics have led to the realization of the Mott insulating phases of atoms in an optical lattice, mimicking the corresponding condensed matter systems. Here, we explore an exotic strongly-correlated system of Interacting Dual Mott Insulators of bosons and fermions. We reveal that an inter-species interaction between bosons and fermions drastically modifies each Mott insulator, causing effects that include melting, generation of composite particles, an anti-correlated phase, and complete phase-separation. Comparisons between the experimental results and numerical simulations indicate intrinsic adiabatic heating and cooling for the attractively and repulsively interacting dual Mott Insulators, respectively

    A Case Study of Crowdsourcing Imagery Coding in Natural Disasters

    No full text
    Crowdsourcing and open licensing allow more people to participate in research and humanitarian activities. Open data, such as geographic information shared through OpenStreetMap and image datasets from disasters, can be useful for disaster response and recovery work. This chapter shares a real-world case study of humanitarian-driven imagery analysis, using open-source crowdsourcing technology. Shared philosophies in open technologies and digital humanities, including remixing and the wisdom of the crowd, are reflected in this case study.This research was funded through the European Commission FP7-ICT project: Citizen Cyberlab: Technology Enhanced Creative Learning in the field of Citizen Cyberscience

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Singular Fermi Liquids

    Full text link
    An introductory survey of the theoretical ideas and calculations and the experimental results which depart from Landau Fermi-liquids is presented. Common themes and possible routes to the singularities leading to the breakdown of Landau Fermi liquids are categorized following an elementary discussion of the theory. Soluble examples of Singular Fermi liquids (often called Non-Fermi liquids) include models of impurities in metals with special symmetries and one-dimensional interacting fermions. A review of these is followed by a discussion of Singular Fermi liquids in a wide variety of experimental situations and theoretical models. These include the effects of low-energy collective fluctuations, gauge fields due either to symmetries in the hamiltonian or possible dynamically generated symmetries, fluctuations around quantum critical points, the normal state of high temperature superconductors and the two-dimensional metallic state. For the last three systems, the principal experimental results are summarized and the outstanding theoretical issues highlighted.Comment: 170 pages; submitted to Physics Reports; a single pdf file with high quality figures is available from http://www.lorentz.leidenuniv.nl/~saarloo

    Individually Modified Saliva Delivery Changes the Perceived Intensity of Saltiness and Sourness

    Get PDF
    Individuals vary largely in their salivary flow and composition, and given the importance of saliva on perception of taste, this might influence how the tastant stimuli are perceived. We therefore hypothesise that altering the individual salivary flow rates has an impact on the perceived taste intensity. In this study, we investigated the role of saliva amount on the perceived taste intensity by excluding parotid saliva and adding artificial saliva close to the parotid duct at preset flow rates. Significant decreases in perception with increasing salivary flow rates were observed for citric acid and sodium chloride. This can partially be explained by a dilution effect which is in line with previous studies on detectable concentration differences. However, since the bitterness and sweetness remained unaffected by the salivary flow conditions and the dilution effect was comparable to that of saltiness, further explanation is needed. Furthermore, we investigated whether the suppression of taste intensity in binary mixtures (taste–taste interactions) could possibly be caused by the increased salivary flow rate induced by an additional taste attribute. The results show, however, that suppression of taste intensity in binary mixtures was not affected by the rate of salivation. This was more likely to be explained by psychophysics

    Low genotypic diversity and long-term ecological decline in a spatially structured seagrass population

    Get PDF
    In isolated or declining populations, viability may be compromised further by loss of genetic diversity. Therefore, it is important to understand the relationship between long-term ecological trajectories and population genetic structure. However, opportunities to combine these types of data are rare, especially in natural systems. Using an existing panel of 15 microsatellites, we estimated allelic diversity in seagrass, Zostera marina, at five sites around the Isles of Scilly Special Area of Conservation, UK, in 2010 and compared this to 23 years of annual ecological monitoring (1996–2018). We found low diversity and long-term declines in abundance in this relatively pristine but isolated location. Inclusion of the snapshot of genotypic, but less-so genetic, diversity improved prediction of abundance trajectories; however, this was spatial scale-dependent. Selection of the appropriate level of genetic organization and spatial scale for monitoring is, therefore, important to identify drivers of eco-evolutionary dynamics. This has implications for the use of population genetic information in conservation, management, and spatial planning

    Combined In Silico and In Vivo Analyses Reveal Role of Hes1 in Taste Cell Differentiation

    Get PDF
    The sense of taste is of critical importance to animal survival. Although studies of taste signal transduction mechanisms have provided detailed information regarding taste receptor calcium signaling molecules (TRCSMs, required for sweet/bitter/umami taste signal transduction), the ontogeny of taste cells is still largely unknown. We used a novel approach to investigate the molecular regulation of taste system development in mice by combining in silico and in vivo analyses. After discovering that TRCSMs colocalized within developing circumvallate papillae (CVP), we used computational analysis of the upstream regulatory regions of TRCSMs to investigate the possibility of a common regulatory network for TRCSM transcription. Based on this analysis, we identified Hes1 as a likely common regulatory factor, and examined its function in vivo. Expression profile analyses revealed that decreased expression of nuclear HES1 correlated with expression of type II taste cell markers. After stage E18, the CVP of Hes1−/− mutants displayed over 5-fold more TRCSM-immunoreactive cells than did the CVP of their wild-type littermates. Thus, according to our composite analyses, Hes1 is likely to play a role in orchestrating taste cell differentiation in developing taste buds
    corecore