509 research outputs found

    Scavenger Receptors as Biomarkers and Therapeutic Targets in Cardiovascular Disease

    Get PDF
    The process of atherosclerosis leads to the formation of plaques in the arterial wall, resulting in a decreased blood supply to tissues and organs and its sequelae: morbidity and mortality. A class of membrane-bound proteins termed scavenger receptors (SRs) are closely linked to the initiation and progression of atherosclerosis. Increasing interest in understanding SR structure and function has led to the idea that these proteins could provide new routes for cardiovascular disease diagnosis, management, and treatment. In this review, we consider the main classes of SRs that are implicated in arterial disease. We consider how our understanding of SR-mediated recognition of diverse ligands, including modified lipid particles, lipids, and carbohydrates, has enabled us to better target SR-linked functionality in disease. We also link clinical studies on vascular disease to our current understanding of SR biology and highlight potential areas that are relevant to cardiovascular disease management and therapy

    Structural Basis for Vascular Endothelial Growth Factor Receptor Activation and Implications for Disease Therapy

    Get PDF
    Vascular endothelial growth factors (VEGFs) bind to membrane receptors on a wide variety of cells to regulate diverse biological responses. The VEGF-A family member promotes vasculogenesis and angiogenesis, processes which are essential for vascular development and physiology. As angiogenesis can be subverted in many disease states, including tumour development and progression, there is much interest in understanding the mechanistic basis for how VEGF-A regulates cell and tissue function. VEGF-A binds with high affinity to two VEGF receptor tyrosine kinases (VEGFR1, VEGFR2) and with lower affinity to co-receptors called neuropilin-1 and neuropilin-2 (NRP1, NRP2). Here, we use a structural viewpoint to summarise our current knowledge of VEGF-VEGFR activation and signal transduction. As targeting VEGF-VEGFR activation holds much therapeutic promise, we examine the structural basis for anti-angiogenic therapy using small-molecule compounds such as tyrosine kinase inhibitors that block VEGFR activation and downstream signalling. This review provides a rational basis towards reconciling VEGF and VEGFR structure and function in developing new therapeutics for a diverse range of ailments

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    Isocitrate Dehydrogenase of Helicobacter pylori Potentially Induces Humoral Immune Response in Subjects with Peptic Ulcer Disease and Gastritis

    Get PDF
    Background. H. pylori causes gastritis and peptic ulcers and is a risk factor for the development of gastric carcinoma. Many of the proteins such as urease, porins, flagellins and toxins such as lipo-polysaccharides have been identified as potential virulence factors which induce proinflammatory reaction. We report immunogenic potentials of isocitrate dehydrogenase (ICD), an important house keeping protein of H. pylori. Methodology/Principal Findings. Amino acid sequences of H. pylori ICD were subjected to in silico analysis for regions with predictably high antigenic indexes. Also, computational modelling of the H. pylori ICD as juxtaposed to the E. coli ICD was carried out to determine levels of structure similarity and the availability of surface exposed motifs, if any. The icd gene was cloned, expressed and purified to a very high homogeneity. Humoral response directed against H. pylori ICD was detected through an enzyme linked immunosorbent assay (ELISA) in 82 human subjects comprising of 58 patients with H. pylori associated gastritis or ulcer disease and 24 asymptomatic healthy controls. The H. pylori ICD elicited potentially high humoral immune response and revealed high antibody titers in sera corresponding to endoscopically-confirmed gastritis and ulcer disease subjects. However, urea-breath-test negative healthy control samples and asymptomatic control samples did not reveal any detectable immune responses. The ELISA for proinflammatory cytokine IL-8 did not exhibit any significant proinflammatory activity of ICD. Conclusions/Significance. ICD of H. pylori is an immunogen which interacts with the host immune system subsequent to a possible autolytic-release and thereby significantly elicits humoral responses in individuals with invasive H. pylori infection. However, ICD could not significantly stimulate IL8 induction in a cultured macrophage cell line (THP1) and therefore, may not be a notable proinflammatory agent

    Molecular pathways involved in the synergistic interaction of the PKCβ inhibitor enzastaurin with the antifolate pemetrexed in non-small cell lung cancer cells

    Get PDF
    Conventional regimens have limited impact against non-small cell lung cancer (NSCLC). Current research is focusing on multiple pathways as potential targets, and this study investigated molecular mechanisms underlying the combination of the PKCβ inhibitor enzastaurin with the multitargeted antifolate pemetrexed in the NSCLC cells SW1573 and A549. Pharmacologic interaction was studied using the combination-index method, while cell cycle, apoptosis induction, VEGF secretion and ERK1/2 and Akt phosphorylation were studied by flow cytometry and ELISAs. Reverse transcription–PCR, western blot and activity assays were performed to assess whether enzastaurin influenced thymidylate synthase (TS) and the expression of multiple targets involved in cancer signaling and cell cycle distribution. Enzastaurin-pemetrexed combination was highly synergistic and significantly increased apoptosis. Enzastaurin reduced both phosphoCdc25C, resulting in G2/M checkpoint abrogation and apoptosis induction in pemetrexed-damaged cells, and GSK3β and Akt phosphorylation, which was additionally reduced by drug combination (−58% in A549). Enzastaurin also significantly reduced pemetrexed-induced upregulation of TS expression, possibly through E2F-1 reduction, whereas the combination decreased TS in situ activity (>50% in both cell lines) and VEGF secretion. The effects of enzastaurin on signaling pathways involved in cell cycle control, apoptosis and angiogenesis, as well as on the expression of genes involved in pemetrexed activity provide a strong experimental basis to their evaluation as pharmacodynamic markers in clinical trials of enzastaurin-pemetrexed combination in NSCLC patients

    Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome

    Get PDF
    Glasdegib is a Hedgehog pathway inhibitor. This phase II, randomized, open-label, multicenter study (ClinicalTrials.gov, NCT01546038) evaluated the efficacy of glasdegib plus low-dose cytarabine (LDAC) in patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome unsuitable for intensive chemotherapy. Glasdegib 100 mg (oral, QD) was administered continuously in 28-day cycles; LDAC 20 mg (subcutaneous, BID) was administered for 10 per 28 days. Patients (stratified by cytogenetic risk) were randomized (2:1) to receive glasdegib/LDAC or LDAC. The primary endpoint was overall survival. Eighty-eight and 44 patients were randomized to glasdegib/LDAC and LDAC, respectively. Median (80% confidence interval [CI]) overall survival was 8.8 (6.9–9.9) months with glasdegib/LDAC and 4.9 (3.5–6.0) months with LDAC (hazard ratio, 0.51; 80% CI, 0.39–0.67, P = 0.0004). Fifteen (17.0%) and 1 (2.3%) patients in the glasdegib/LDAC and LDAC arms, respectively, achieved complete remission (P < 0.05). Nonhematologic grade 3/4 all-causality adverse events included pneumonia (16.7%) and fatigue (14.3%) with glasdegib/LDAC and pneumonia (14.6%) with LDAC. Clinical efficacy was evident across patients with diverse mutational profiles. Glasdegib plus LDAC has a favorable benefit–risk profile and may be a promising option for AML patients unsuitable for intensive chemotherapy

    Immune response of macrophages from young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis

    Get PDF
    Periodontal disease is a chronic inflammatory gum disease that in severe cases leads to tooth loss. Porphyromonas gingivalis (Pg) is a bacterium closely associated with generalized forms of periodontal disease. Clinical onset of generalized periodontal disease commonly presents in individuals over the age of 40. Little is known regarding the effect of aging on inflammation associated with periodontal disease. In the present study we examined the immune response of bone marrow derived macrophages (BMM) from young (2-months) and aged (1-year and 2-years) mice to Pg strain 381. Pg induced robust expression of cytokines; tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, chemokines; neutrophil chemoattractant protein (KC), macrophage colony stimulating factor (MCP)-1, macrophage inflammatory protein (MIP)-1α and regulated upon activation normal T cell expressed and secreted (RANTES), as well as nitric oxide (NO, measured as nitrite), and prostaglandin E2 (PGE2) from BMM of young mice. BMM from the 2-year age group produced significantly less TNF-α, IL-6 and NO in response to Pg as compared with BMM from 2-months and 1-year of age. We did not observe any difference in the levels of IL-1β, IL-10 and PGE2 produced by BMM in response to Pg. BMM from 2-months and 1-year of age produced similar levels of all chemokines measured with the exception of MCP-1, which was reduced in BMM from 1-year of age. BMM from the 2-year group produced significantly less MCP-1 and MIP-1α compared with 2-months and 1-year age groups. No difference in RANTES production was observed between age groups. Employing a Pg attenuated mutant, deficient in major fimbriae (Pg DPG3), we observed reduced ability of the mutant to stimulate inflammatory mediator expression from BMMs as compared to Pg 381, irrespective of age. Taken together these results support senescence as an important facet of the reduced immunological response observed by BMM of aged host to the periodontal pathogen Pg
    corecore