21 research outputs found
Recommended from our members
Ecosystem service values support conservation and sustainable land development: Perspectives from four University of California campuses
Urban landscapes homogenize our world at global scales, contributing to “extinction of experience”, a progressive decline in human interactions with native greenspace that can disconnect people from the services it provides. College age adults report feeling disconnected from nature more than other demographics, making universities a logical place to explore interventions intended to restore a connection with nature. This study surveyed 1088 students and staff across four university campus communities in Southern California, USA and used multicriteria decision analysis to explore their landscape preferences and the implications of those preferences for combatting extinction of experience. Our results suggest that perspectives of, and preferences for, different greenspace forms vary significantly (i.e., they are not perceived as substitutable). Support for native ecosystems, particularly coastal sage scrub (top ranked landscape) was generally high, suggesting that disaffection with wild nature is not particularly widespread. Programs for replacing turf grass lawns (lowest ranked landscape) with native plants were also well supported, but support for stormwater bioswales was more moderate (and variable). This may reflect their relative newness, both on university campuses and in urban spaces more generally. Not all members of campus communities preferred the same landscapes; preferences differed with degree of pro-environmentalism and university status (undergraduate student, graduate student, staff). Even so, all respondents exhibited landscape preferences consistent with at least one approach for combatting extinction of experience, suggesting that ecologists, engineers and urban planners have a viable set of generalizable tools for reconnecting people with nature
Tissue Tropism and Target Cells of NSs-Deleted Rift Valley Fever Virus in Live Immunodeficient Mice
Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice
Recommended from our members
Predicting Solute Transport Through Green Stormwater Infrastructure With Unsteady Transit Time Distribution Theory
In this study, we explore the use of unsteady transit time distribution (TTD) theory to model solute transport in biofilters, a popular form of nature-based or “green” storm water infrastructure (GSI). TTD theory has the potential to address many unresolved challenges associated with predicting pollutant fate and transport through these systems, including unsteadiness in the water balance (time-varying inflows, outflows, and storage), unsteadiness in pollutant loading, time-dependent reactions, and scale-up to GSI networks and urban catchments. From a solution to the unsteady age conservation equation under uniform sampling, we derive an explicit expression for solute breakthrough during and after one or more storm events. The solution is calibrated and validated with breakthrough data from 17 simulated storms at a field-scale biofilter test facility in Southern California, using bromide as a conservative tracer. TTD theory closely reproduces bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. At any given time, according to theory, more than half of the water in storage is from the most recent storm, while the rest is a mixture of penultimate and earlier storms. Thus, key management endpoints, such as the pollutant treatment credit attributable to GSI, are likely to depend on the evolving age distribution of water stored and released by these systems
Predicting Solute Transport Through Green Stormwater Infrastructure With Unsteady Transit Time Distribution Theory
In this study, we explore the use of unsteady transit time distribution (TTD) theory to model solute transport in biofilters, a popular form of nature-based or “green” storm water infrastructure (GSI). TTD theory has the potential to address many unresolved challenges associated with predicting pollutant fate and transport through these systems, including unsteadiness in the water balance (time-varying inflows, outflows, and storage), unsteadiness in pollutant loading, time-dependent reactions, and scale-up to GSI networks and urban catchments. From a solution to the unsteady age conservation equation under uniform sampling, we derive an explicit expression for solute breakthrough during and after one or more storm events. The solution is calibrated and validated with breakthrough data from 17 simulated storms at a field-scale biofilter test facility in Southern California, using bromide as a conservative tracer. TTD theory closely reproduces bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. At any given time, according to theory, more than half of the water in storage is from the most recent storm, while the rest is a mixture of penultimate and earlier storms. Thus, key management endpoints, such as the pollutant treatment credit attributable to GSI, are likely to depend on the evolving age distribution of water stored and released by these systems