1,196 research outputs found

    Trace metals distribution and uptake in soil and rice grown on a 3-year vermicompost amended soil

    Get PDF
    This study was designed to investigate the influence of vermicompost (VC) on trace metals distribution and uptake in soil and rice plant in research field as split plot arrangement based on randomized complete block design with three replications in 2008. Main-plot was VC and chemical fertilizer (CF) that were added to soil in 6 levels (20 and 40 ton/ha VC, 20 and 40 ton/ha VC + 1/2 CF, CF and control). Application years considered as sub-plot comprised 1, 2 and 3 years. The results indicated thatfertilizers and application periods treatments influenced micronutrients in soil and rice. Available copper (Cu) had no significant difference under different treatments. The highest available iron (Fe) was found in the 40 ton treatment group. During the 3 years, application of 20 ton and enriched 40 ton gave the most available zinc (Zn) and manganese (Mn). In VC and enriched VC, treatments happened to give the highest Zn uptake by rice. Under the 3 years, application of 40 ton/ha VC, the highest Fe (91.19 ppm) and Cu (13.66 ppm) concentration was seen in flag leaf, while Fe (31.35 ppm) and Mn (27.56 ppm) was seen in grain. With the application of enriched 20 ton VC, the maximum uptake of Mn by flag leaf and Cu by grain was obtained

    Quantifying techno-economic indicators\u27 impact on isolated renewable energy systems

    Get PDF
    Addressing climate change with the rising global energy usage necessitates electricity sector decarbonization by rapidly moving toward flexible and efficient off-grid renewable energy systems (RESs). This paper analyzes the wind and solar micro-grids, with batteries and pumped hydro storage for a robust off-grid RES techno-economic operation, while considering diverse multi-objective optimization cases. This research has considered the RES variable operational losses in the developed methodology and relations between different indicators are evaluated, revealing a basic understanding between them. The results reveal that the reliability index is inversely related to the oversupply index, while directly related to the system self-sufficiency index. The cost of energy is more sensitive to technical indicators rather than the storage cost and so can be used as a primary monetary index. Energy and cost balance analysis showed that 16%-20% of the used energy was drained in RES operational losses, which were usually ignored in previous studies

    Stochastic assessment of landslide influence zone by material point method and generalized geotechnical random field theory

    Get PDF
    In landslide analysis, reliable prediction of landslide’s influence zone is significantly difficult due to inherent heterogeneity of soils and their spatially varying geological properties. In this paper, a probabilistic framework is proposed to evaluate the landslide hazard zoning through prediction of their influence zone considering the effects of heterogeneous soil properties. Material point method is used to simulate the large deformations during landslide failure. The spatial variation in the shear strength parameters of soils at undrained conditions is modeled by random fields, which are discretized by Cholesky matrix decomposition method to incorporate the effects of the soil spatial heterogeneity on the post-failure deformations. Furthermore, a practical landslide hazard zoning is conducted to quantitively evaluate the level of disaster for facilities or structures located in the vicinity of the slope by using the exceedance probability of influence distance and runout distance. Five categories based on different thresholds of exceedance probability are used to visualize the area potentially affected by the landslide. To demonstrate the capability of the stochastic assessment framework, a benchmark example of heterogeneous clayey slope is simulated, and the associated hazard zone is predicted and discussed; it presents a practical procedure for improving the landslide influence zone prediction and provides new insights for hazard zoning

    Uncertainty quantification of landslide runout motion considering soil interdependent anisotropy and fabric orientation

    Get PDF
    Natural soils often exhibit an anisotropic fabric pattern as a result of soil deposition, weathering, or filling. This paper aims to investigate the effect of soil interdependent anisotropy and fabric orientation on runout motions of landslides and evaluate the most critical fabric orientation for the post-failure behavior. The shear strength properties of soil deposit (i.e., cohesion c and friction angle φ) are modeled as negatively cross correlated bivariate random fields. The results reveal that the spatial variability and the negative cross-correlation of c and φ notably influence the post-failure behavior. In addition, the rotation of soil layer orientation significantly affects the runout motion. Based on the analyses, the deposition orientation of 30∘ is identified to produce the highest mean value and standard deviation of the runout distance. The findings from this study highlight the importance of considering the orientation of soil stratification, rather than only the magnitude of shear strength, in assessing the post-failure behavior of a landslide

    Communicating Processes with Data for Supervisory Coordination

    Full text link
    We employ supervisory controllers to safely coordinate high-level discrete(-event) behavior of distributed components of complex systems. Supervisory controllers observe discrete-event system behavior, make a decision on allowed activities, and communicate the control signals to the involved parties. Models of the supervisory controllers can be automatically synthesized based on formal models of the system components and a formalization of the safe coordination (control) requirements. Based on the obtained models, code generation can be used to implement the supervisory controllers in software, on a PLC, or an embedded (micro)processor. In this article, we develop a process theory with data that supports a model-based systems engineering framework for supervisory coordination. We employ communication to distinguish between the different flows of information, i.e., observation and supervision, whereas we employ data to specify the coordination requirements more compactly, and to increase the expressivity of the framework. To illustrate the framework, we remodel an industrial case study involving coordination of maintenance procedures of a printing process of a high-tech Oce printer.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    A Process Algebra for Supervisory Coordination

    Get PDF
    A supervisory controller controls and coordinates the behavior of different components of a complex machine by observing their discrete behaviour. Supervisory control theory studies automated synthesis of controller models, known as supervisors, based on formal models of the machine components and a formalization of the requirements. Subsequently, code generation can be used to implement this supervisor in software, on a PLC, or embedded microprocessor. In this article, we take a closer look at the control loop that couples the supervisory controller and the machine. We model both event-based and state-based observations using process algebra and bisimulation-based semantics. The main application area of supervisory control that we consider is coordination, referred to as supervisory coordination, and we give an academic and an industrial example, discussing the process-theoretic concepts employed.Comment: In Proceedings PACO 2011, arXiv:1108.145

    Estimating the incidence of lung cancer attributable to occupational exposure in Iran

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The aim of this study was to estimate the fraction of lung cancer incidence in Iran attributed to occupational exposures to the well-established lung cancer carcinogens, including silica, cadmium, nickel, arsenic, chromium, diesel fumes, beryllium, and asbestos.</p> <p>Methods</p> <p>Nationwide exposure to each of the mentioned carcinogens was estimated using workforce data from the Iranian population census of 1995, available from the International Labor Organization (ILO) website. The prevalence of exposure to carcinogens in each industry was estimated using exposure data from the CAREX (CARcinogen EXposure) database, an international occupational carcinogen information system kept and maintained by the European Union. The magnitude of the relative risk of lung cancer for each carcinogen was estimated from local and international literature. Using the Levin modified population attributable risk (incidence) fraction, lung cancer incidence (as estimated by the Tehran Population-Based Cancer Registry) attributable to workplace exposure to carcinogens was estimated.</p> <p>Results</p> <p>The total workforce in Iran according to the 1995 census identified 12,488,020 men and 677,469 women. Agriculture is the largest sector with 25% of the male and 0.27% of female workforce. After applying the CAREX exposure estimate to each sector, the proportion exposed to lung carcinogens was 0.08% for male workers and 0.02% for female workers. Estimating a relative risk of 1.9 (95% CI of 1.7–2.1) for high exposure and 1.3 (95% CI 1.2–1.4) for low exposure, and employing the Levin modified formula, the fraction of lung cancer attributed to carcinogens in the workplace was 1.5% (95% CI of 1.2–1.9) for females and 12% (95% CI of 10–15) for males. These fractions correspond to an estimated incidence of 1.3 and 0.08 cases of lung cancer per 100,000 population for males and females, respectively.</p> <p>Conclusion</p> <p>The incidence of lung cancer due to occupational exposure is low in Iran and, as in other countries, more lung cancer is due to occupational exposure among males than females.</p

    Evaluation of Cause of Deaths' Validity Using Outcome Measures from a Prospective, Population Based Cohort Study in Tehran, Iran

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate the validity of cause of death stated in death certificates in Tehran using outcome measures of the Tehran Lipid and Glucose Study (TLGS), an ongoing prospective cohort study. METHODS: The cohort was established in 1999 in a population of 15005 people, 3 years old and over, living in Tehran; 3551 individuals were added to this population three years later. As part of cohort's outcome measures, deaths occurring in the cohort are investigated by a panel of medical specialists (Cohort Outcome Panel--COP) and underlying cause of death is determined for each death. The cause of death assigned in a deceased's original death certificate was evaluated against the cause of death determined by COP and sensitivity and positive predictive values (PPV) were determined. In addition, determinants of assigning accurate underlying cause of death were determined using logistic regression model. RESULT: A total of 231 death certificates were evaluated. The original death certificates over reported deaths due to neoplasms and underreported death due to circulatory system and transport accidents. Neoplasms with sensitivity of 0.91 and PPV of 0.71 were the most valid category. The disease of circulatory system showed moderate degree of validity with sensitivity of 0.67 and PPV of 0.78. The result of logistic regression indicated if the death certificate is issued by a general practitioner, there is 2.3 (95% CI 1.1, 5.1) times chance of being misclassified compared with when it is issued by a specialist. If the deceased is more than 60 years, the chance of misclassification would be 2.5 times (95% CI of 1.1, 5.9) compared with when the deceased is less than 60 years

    β-Amyloid 1-42 Oligomers Impair Function of Human Embryonic Stem Cell-Derived Forebrain Cholinergic Neurons

    Get PDF
    Cognitive impairment in Alzheimer's disease (AD) patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs). Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ) peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES) cells with nerve growth factor (NGF) as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations) and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1–40 increased the number of functional neurons, whereas oligomeric Aβ1–42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1–40 and Aβ1–42 induced gliogenesis. These findings indicate that Aβ1–42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ
    • …
    corecore