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 Stochastic assessment of landslide influence zone by material 

point method and generalized geotechnical random field theory 

Guotao Ma1, Mohammad Rezania2,  Mohaddeseh Mousavi Nezhad3 

Abstract 

In landslide analysis, reliable prediction of landslide’s influence zone is significantly difficult due 

to inherent heterogeneity of soils and their spatially varying geological properties. In this paper, a 

probabilistic framework is proposed to evaluate the landslide hazard zoning through prediction of 

their influence zone considering the effects of heterogeneous soil properties. Material point method 

is used to simulate the large deformations during landslide failure. The spatial variation in the shear 

strength parameters of soils at undrained conditions is modeled by random fields, which are 

discretized by Cholesky matrix decomposition method to incorporate the effects of the soil spatial 

heterogeneity on the post-failure deformations. Furthermore, a practical landslide hazard zoning 

is conducted to quantitively evaluate the level of disaster for facilities or structures located in the 

vicinity of the slope by using the exceedance probability of influence distance and runout distance. 

Five categories based on different thresholds of exceedance probability are used to visualize the 

area potentially affected by the landslide. To demonstrate the capability of the stochastic 
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assessment framework, a benchmark example of heterogeneous clayey slope is simulated, and the 

associated hazard zone is predicted and discussed; it presents a practical procedure for improving 

the landslide influence zone prediction and provides new insights for hazard zoning. 

Keywords: Landslide, Influence zone, random field theory, material point method, hazard zoning 

Introduction 

Landslides are one of the most common natural geological hazards in the world (Huang and Fan 

2013; Hungr et al. 2014). Thousands of slopes fail every year with detrimental consequences and 

significant damages to human life and properties (Ma et al. 2018; He et al. 2019). In many 

occasions, due to extensive runout of the landslides, substantial destruction can be observed on 

nearby structures (Yin et al. 2009, 2016). Landslide runout distance is one of the crucial factors 

that influences the level of disaster and there are many examples that confirm its devastating 

impacts during/after landslides. For instance, the 1966 Aberfan flowslide in the United Kingdom 

killed 144 people because of its extensive runout distance of about 640 m (Bishop et al. 1969). 

The 1972 Poshan road landslide in Hong Kong killed 73 people and destroyed 33 residential 

buildings by the sliding mass with a runout distance of approximately 1,100 m (Brand et al. 1984). 

The La Conchita landslide in the United States destroyed 9 homes in 1995 and killed 10 people in 

2005 with its reactivated long runout sliding mass (Jibson 2006). The 2014 Oso landslide with the 

runout distance of about 1,000 m killed 43 people and destroyed 49 homes (Iverson et al. 2015). 

These examples show that the level of casualties and destruction of structures or facilities are 

directly influenced by the post-failure behavior of landslides. Understanding post-failure behavior 

of landslides is significantly important as it allows for the prediction of possible catastrophic 

consequences and timely planning of the disaster mitigation measures. For disaster mitigation and 
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resource planning of critical infrastructures located in the vicinity of slopes, it is crucial to rank 

the potential landslides and quantify the related hazard levels. This ranking allows to prioritize 

mitigation actions for the landslides with high failure probability and catastrophic consequences. 

Thus, this paper is dedicated to consequence assessment of landslides, post-failure, and to 

invesitage how serious damages of landslides after failure . 

In engineering geology, variability of natural geomaterials (e.g. sand, silt, clay) is widely admitted. 

It has been proved that the spatial variability of the soil hydromechanical attributes notably 

influences the likelihood of the landslides (Hicks and Samy 2002), as well as their failure modes 

and mechanisms (Zhu and Zhang 2013), and subsequently affects on the post-failure behavior and 

runout motions. Experimental investigations together with geostatistical analyses proved that 

hydromechanical properties of the soils can be defined by multivariate random function 

characterized by spatial scale of fluctuation (named also correlations lengths), such that values of 

these attributes at points separated by distances much larger than the scale of the fluctuations are 

uncorrelated (Vanmarcke 1977, 2010; Mousavi Nezhad 2010). For instance, the spatial variability 

of shear strength of the soils could entail scales of fluctuation ranging from less than 1 m to tens 

of meters along different directions (Lacasse and Nadim 1997). Random field (RF) modeling is 

widely used in analyzing uncertainties of geotechnical properties (Mousavi Nezhad et al. 2013, 

2018) and widely integrated with limit equilibrium method (LEM) (e.g. Mafi et al. 2020) and finite 

element method (FEM) (e.g., Griffiths and Fenton 2004; Jiang et al. 2014; Masoudian et al. 2019). 

In recent years, many probabilistic analyses have been conducted to investigate the effects of soil 

heterogeneity on the landslide modeling. Zhang et al. (2018) summarized the recent developments 

in probabilistic assessment of the slope failure, in which landslide instability or corresponding 

probability of failure (𝑃𝑓) are mainly evaluated by the two abovementioned methods (i.e., LEM 
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and FEM). Among these studies, it can be noticed that modeling the consequences of the landslide 

hazards are still an open question. The main obstacle is how to include the spatial variability of the 

soil properties in the modeling algorithm in a computationally efficient and reliable manner. Part 

of the modeling challenges is related to the numerical instability of the classical Lagrangian 

modeling algorithms (e.g., Galerkin FEM algorithms) due to mesh distortion or twisting that 

occurs when simulating large deformation problems. The other issue is describing random 

parameters with appropriate geostatistical functions and parameters and implementing them into 

the large deformation modeling algorithms in the statistically and numerically consistent manner. 

As a result, a limited number of modeling frameworks have been developed so far for simulation 

of the post-failure processes in heterogeneous landslides or slope failures and their resulting 

consequences. 

Recent progress in developing mesh-free particle methods, such as smoothed particle 

hydrodynamics (SPH) method (Nonoyama et al. 2015) and material point method (MPM) (Yerro 

et al. 2015; Soga et al. 2016), made it possible to tackle the numerical instability issues associated 

with the mesh distortion problems. MPM uses a combination of Lagrangian particles and Eulerian 

background computational mesh to avoid excessive mesh distortions issues that emerge in solving 

the partial differential equations of problems involving large deformations. The success of the 

MPM in reliably modeling the large deformation phenomena attracted researchers to adopt this 

method for modeling of landslides, slope failures, embankment collapse, and other large strain 

geological and geotechnical problems (e.g., Andersen and Andersen 2010; Wang et al. 2016; 

Llano-Serna et al. 2016; Li et al. 2016). However, in the previous MPM studies, the materials have 

been mainly assumed to be simply homogeneous and isotropic, and the geomaterials’ responses 

have been modeled deterministically using constant values of soil parameters. Recently, Wang 
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(2017) investigated two main slope failure mechanisms of a landslide by MPM and combined the 

MPM with RF theory to quantify the retrogressive distance (influence distance) from the slope 

crest. Liu et al. (2019) utilized the LEM and MPM combined with Monte Carlo (MC) simulations 

to quantify the failure probability of landslides and predict the slope failure modes. Liu et al. (2021) 

conducted postfailure analysis of isotropic deposited slopes by probabilistic MPM analysis.  

In this study, an integrated computational framework based on the stochastic material point method 

is developed and implemented to simulate landslides and quantify their hazard zones. The aim is 

to incorporate the effects of the statistically complex spatial variability of the soil characteristics 

on modeling the failure process using a generalized RF concept. The landslide runout distance and 

influence distance are probabilistically estimated, and a hazard zoning analysis is adopted to 

evaluate the impact of the landslides on nearby developments and delineate hazard levels. 

Methodology 

Landslide's influence zone assessment framework 

In what follows, a computational stochastic assessment framework is developed using RF theory 

within the context of MPM (henceforth referred to as stochastic MPM) for landslide influence 

zone analysis during the post-failure stage. The overall structure of the framework contains a) an 

algorithm to generate RF samples of the spatially variable soil properties; b) a modeling algorithm 

based on MPM for landslide simulation; and c) an MC simulation algorithm for the quantitative 

evaluation of the landslide influence zone. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0002308
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Fig. 1 Schematic view of the landslide influence distance (𝐼) and runout distance (𝑅) 

The framework utilizes the risk aggradation methodology to rank the hazards. The predicted results 

from the probabilistic framework illustrate the soil behavior in the vicinity of the landslide 

initiation point which is quantified by failure parameters i.e., influence distances 𝐼 and runout 

distances 𝑅  as defined in Fig. 1. Multiple random samples are given to the framework to 

incorporate the spatial variability of the heterogeneous soil in the failure process modeling. The 

MPM applies to evaluate the influence distances from the slope crest and runout distances from 

slope toe for each sample, and the multiple outputs generated by the MC simulations are used to 

evaluate the statistical features of the failure parameters, and corresponding hazard zones for the 

structures or facilities (Fig. 2).  
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Fig. 2 Framework for evaluation of the influence zone of landslides 

In general, if the landslide runout exceeds the distance between the structure at risk and the initial 

toe of the slope, the structure will certainly be affected by the landslide. The same is the case for a 

structure located at the crest of the slope that is susceptible to potential retrogressive failure. 

Therefore, it should be identifed whether the influence zone of a potential landslide will exceed a 

given threshold value in respect of influence distances 𝐼 and runout distances 𝑅. Assuming there 
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are structures (e.g., railways, bridges, and residential buildings) located at distances 𝑅𝑠  (or 𝐼𝑠 ) 

away from the toe (or crest) of the slope. A limit state function can be formulated 

𝐺𝐼(𝒙) = 𝐼𝑠 − 𝐼(𝒙) (1) 

𝐺𝑅(𝒙) = 𝑅𝑠 − 𝑅(𝒙) (2) 

where 𝒙 is a vector consisting of a generated RF sample considered in the model; 𝐼(𝒙) or 𝑅(𝒙) are 

the computed 𝐼 or 𝑅 associated with 𝒙. Therefore, 𝐺𝐼(𝒙) < 0 means the influence distance of the 

landslide exceeds the threshold values and affects the structure (similarly for 𝐺𝑅(𝒙) ). 

Subsequently, the probability of the landslide impacting these structures can be expressed as 𝑃(𝐼 >

𝐼𝑠) and 𝑃(𝑅 > 𝑅𝑠), respectively.  

𝑃(𝐼 > 𝐼𝑠) = 𝑃[𝐺𝐼(𝒙) ≤ 0] = ∫ 𝑓𝑥
𝐺𝐼(𝒙)≤0

(𝒙) ⅆ𝒙 (3) 

𝑃(𝑅 > 𝑅𝑠) = 𝑃[𝐺𝑅(𝒙) ≤ 0] = ∫ 𝑔𝑥
𝐺𝑅(𝒙)≤0

(𝒙)ⅆ𝒙 (4) 

where, 𝑃(𝐼 > 𝐼𝑠) defines the exceedance probability of the cases in which the influence distance 

𝐼 exceeds 𝐼𝑠; 𝑓𝑥(𝒙) is the corresponding joint probability density function of 𝒙, the integral is taken 

over the values of 𝒙 that leads to 𝐺𝐼(𝒙) ≤ 0; the 𝑃(𝑅 > 𝑅𝑠) defines exceedance probability of the 

cases in which the runout distance 𝑅 exceeds 𝑅𝑠 ; 𝑔𝑥(𝒙) is the corresponding joint probability 

density function of 𝒙, the integral is taken over the values of 𝒙 that leads to 𝐺𝑅(𝒙) ≤ 0.  
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Landslide post-failure modeling 

Governing equations 

The numerical analysis of thermo-mechanical systems in the field of continuum mechanics 

initiates by establishing the idealized mathematical formulations using conservation laws and 

constitutive models. There are four conservation rules that should be satisfied over the problem 

domain and boundaries, namely (1) the conservation of mass, (2) the conservation of linear 

momentum, (3) the conservation of angular momentum, and (4) the conservation of energy. For 

the case of isothermal conditions, the conservation of mass and linear momentum leads to that of 

energy. Moreover, the conservation of angular momentum is proved by considering the 

symmetrical stress tensor. Therefore, only the conservation of mass and linear momentum, which 

is called momentum from now on, form the governing equations in the most cases. The derivations 

of these laws are out of the scope of this study, but can be found in detail in Reddy (2013). 

Consider the problem domain  𝛺  which is surrounded by boundary  𝛤 . The boundary can be 

considered as the union of two displacement (𝛤𝑢) and traction (𝛤𝑡) boundaries. Without going 

through the derivation, the mathematical form of the conservation of mass and momentum laws 

can be written as follow over the problem domain and boundary 

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝑣𝑖

𝜕𝑥𝑖
= 0                                                                      (5) 

𝜌
𝜕𝑣𝑖

𝜕𝑡
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑏𝑖                                                                     (6) 

Where, 𝜌 is the mass density, 𝑣𝑖 is the velocity, 𝜎𝑖𝑗 is the Cauchy stress tensor, and 𝑏𝑖 is the body 

force. Since Eq. (6) is in the strong form, finding a solution is almost impossible for complex 

practical problems. Thus, to achieve a weak form governing equation, the momentum equation 
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should be multiplied by a virtual displacement (𝛿𝑢𝑖) and it has to be integrated over the domain 𝛺. 

By applying Gauss's divergence theorem, the virtual work equation can be expressed as 

∫ 𝛿
𝛺

𝑢𝑖,𝑗𝜌𝜎𝑖𝑗
𝑠 𝑑𝑉 + ∫ 𝛿

𝛺
𝑢𝑖𝜌𝑢̈𝑖𝑑𝑉 − ∫ 𝛿

𝛺
𝑢𝑖𝜌𝑏𝑖𝑑𝑉 − ∫ 𝛿

𝛤𝑡
𝑢𝑖𝑡𝑖𝑆‾ 𝜌𝑑𝐴 = 0                         (7)                                    

where, 𝑢𝑖 is displacement, 𝜎𝑖𝑗
𝑠  is the specific stress (𝜎𝑖𝑗

𝑠 = 𝜎𝑖𝑗/𝜌), 𝑡𝑖𝑆‾  is the specific traction (𝑡𝑖𝑆‾ =

𝑡‾𝑖/𝜌), and 𝛿𝑢𝑖,𝑗 = 𝜕(𝛿𝑢𝑖) 𝜕𝑥𝑗⁄ . 

Applied constitutive model 

The accuracy and reliability of FEM analysis is significantly dependent on the appropriateness of 

the constitutive model used (e.g., Rezania et al. 2014, Rezania et al. 2018). The Drucker-Prager 

(D-P) constitutive model with strain softening feature is employed in this work to describe the 

geomaterial’s behavior (Huang et al. 2015). The shear yield function 𝐹𝑠 and tensile yield function 

𝐹𝑡 of the D-P yield criterion (as shown in Fig. 3a) are expressed as 

             𝐹𝑠 = √𝐽2 + 𝑞𝜑𝐼1 − 𝑘𝑐                                                  (8) 

𝐹𝑡 =
𝐼1

3
− 𝜎𝑡                                                                 (9) 

where, the 𝑞𝜑 and 𝑘𝑐  are the parameters related to the internal friction angle 𝜑 and cohesion 𝑐 of 

soil, 𝐽2 is the second invariant of the deviatoric stress tensor, 𝐼1 the first invariant of the stress 

tensor, and 𝜎𝑡 is the tensile strength. The 𝑞𝜑 and 𝑘𝑐  are given by 

                                                            𝑞𝜑 =
tan𝜑

√9+12tan2𝜑
                                                            (10) 

𝑘𝑐 =
3𝑐

√9+12tan2𝜑
                                                           (11) 
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The model uses a non-associated flow rule with shear potential function, 𝐺𝑠 (for shear plastic flow) 

and tensile potential function, 𝐺𝑡(for tensile plastic flow) defined as 

                                                        𝐺𝑠 = √𝐽2 + 𝑞𝜓𝐼1                                                      (12) 

𝐺𝑡 =
𝐼1

3
                                                                      (13) 

where 

𝑞𝜓 =
tan𝜓

√9+12tan2𝜓
                                                          (14) 

where, the 𝜓 is the dilation angle, the 𝑞𝜓 equals to 𝑞𝜑 when the flow rule is assumed associated. 

It is admitted that the strength properties are significantly degraded in mobilized soil mass during 

the sliding. In this work, the strain-softening behavior induced by increasing deviatoric plastic 

strain is used in the D-P model (Fig. 3b), and the corresponding softening rules are defined as 

𝑐 = 𝑐𝑟 + (𝑐𝑝 − 𝑐𝑟)𝑒
−𝜂<𝜀𝑒𝑝−𝜀𝑝𝑝> (15) 

𝜑 = 𝜑𝑟 + (𝜑𝑝 − 𝜑𝑟)𝑒
−𝜂<𝜀𝑒𝑝−𝜀𝑝𝑝> (16) 

where, 𝑐𝑟 and 𝑐𝑝 are residual cohesion and peak cohesion, 𝜑𝑟 and 𝜑𝑝 are residual friction angle 

and peak friction angle, 𝜂  and 𝜀𝑒𝑝  are shape factor and deviatoric plastic strain, respectively. 

Moreover, 𝜀𝑝𝑝 shows the threshold strain of softening behavior. Regarding Eqs. (15) and (16), the 

cohesion and friction angle of the soil remain constant for 𝜀𝑒𝑝  < 𝜀𝑝𝑝 (Macaulay brackets < > are 

used so that only the positive values are taken into account). Once the plastic deviatoric strain 

exceeds the threshold strain (𝜀𝑒𝑝  > 𝜀𝑝𝑝), the strength parameters start to reduce and tend to their 

residual values.  
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(a)                                                                   (b) 

Fig. 3 (a) Yield surface of the D-P model in 𝜋 plane; (b) sketch of the strain softening model 

Generalized interpolation material point method (GIMP) 

MPM is a particle-based mesh-free method which was developed on the basis of the particle-in-

cell concept (Sulsky et al. 1994) and has been proven as a promising particle-based method for 

modeling the behavior of different earth structures under the large strain processes (Soga et al. 

2016). MPM consists of two discretizations, including a) a cluster of material points (Lagrangian 

particles) representing the continuous material which is allowed to move freely and carry the 

density, strain, stress, and all state variables of the continuous body; and b) a background Eulerian 

mesh for solving the governing equations and determining incremental velocities, instead of 

carrying mechanical parameter information. However, the original MPM has cell-crossing 

instability, which is caused by a discontinuous gradient of shape functions. The generalized 

interpolation material point method (GIMP) overcomes the instability by allocating each material 

point its own non-singular domain (Bardenhagen 2002; Bardenhagen and Kober 2004), which has 

been demonstrated as a stable and useful tool in MPM modeling (Bardenhagen and Kober 2004). 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0002308


ASCE International Journal of Geomechanics. Submitted Dec 2020; Published Jan 2022. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0002308  

13 

 

 

Fig. 4 GIMP discretization 

Fig. 4 illustrates the discretization of material body and space using the GIMP which relies on 

Petrov-Galerkin discretization. A material body within the domain of the problem is discretized 

into a finite number of material points. In GIMP, the material point is a domain which mass and 

other variables vary according to a particle characteristic function 𝜒𝑝(𝑥) (Bardenhagen and Kober 

2004) satisfying the partition of unity property (∑ 𝜒𝑝𝑝 (𝑥) = 1, ∀𝑥). In the particle domain Ω𝑝, the 

particle characteristic function has generally been assumed 

𝜒𝑝(𝒙) = {
1      𝒙 ∈ Ω𝑝       

 0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                       (17) 

The function 𝜒𝑝(𝒙) is used as a basis for representing particle data by giving a material point 

property 𝑓𝑝 (e.g. particle density 𝜌𝑝, stress 𝜎𝑖𝑗𝑝, and volume 𝑉𝑝).  
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To discretize the space occupied by the grid, computational grid shape function 𝑆𝐼  is introduced 

and required to be a partition of unity (∑ 𝑆𝐼𝐼 (𝑥) = 1,∀𝑥), which is expressed as 

1
( )

p

Ip p I

p

S x N d
V


 

=                                                        (18) 

, ,

1
( )

p

Ip j p I j

p

S x N d
V


 

=                                                      (19) 

where, 𝑁𝐼  is the grid nodal shape function, gradients 𝑆𝐼𝑝,𝑗  are implicit functions of grid node 

position 𝑥𝐼, particle position 𝑥𝑝, and current particle volume 𝛺𝑝. For this step, the discretization is 

analogous to FEM. After GIMP discretization, computing the total nodal force 𝑓𝑖𝐼 

𝑓𝑖𝐼 = 𝑓𝑖𝐼
𝑖𝑛𝑡 + 𝑓𝑖𝐼

𝑒𝑥𝑡                                                                  (20) 

                                   𝑓𝑖𝐼
𝑖𝑛𝑡 = −∑ 𝜎𝑖𝑗𝑝𝑝 𝑆𝐼𝑝,𝑗𝑉𝑝                                                         (21) 

𝑓𝑖𝐼
𝑒𝑥𝑡 = ∑ 𝑚𝑝𝑝 𝑆𝐼𝑝𝑏𝑖𝑝 + ∫ 𝑆𝐼𝛤𝑡

(𝑥)𝑡‾𝑖𝑑𝛤𝑡                                    (22) 

where, the 𝑓𝑖𝐼
𝑖𝑛𝑡  is the nodal internal force and 𝑓𝑖𝐼

𝑒𝑥𝑡  is the nodal external force at node I, 

respectively. Then, by integrating momentum equations and applying the boundary conditions, the 

material point position and velocities can be computed. As for the time when the stress is updated, 

the modified update stress last (MUSL) is adopted in this work, for its better computational 

stability (Nairn 2003) compared with update stress first (USF) (Bardenhagen 2002) and update 

stress last (USL) (Sulsky et al. 1994). 
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Random field generation 

The failure mode during the landslides is significantly affected by mechanical properties of the 

soils (e.g., cohesion, internal friction angle, and shear strength) and their inherent spatial 

variability. Therefore, soil characteristics are defined as RFs, and prior information from their 

spatial variability are used to calibrate their statistical features which are described by a probability 

density function with mean value 𝜇 and coefficient of variation (COV), and a spatial correlation 

function (Phoon and Kulhawy 1996; Phoon 2008; Jiang et al. 2014; Liu et al. 2017). Then, using 

the predefined statistical features, random samples are generated for the soil characteristics to 

model its spatial variability over the simulation domain. The autocorrelation function (ACF) 

allows to mathematically characterize the spatial correlation structure between any two points 

despite their absolute coordinates. It is assumed that the soil characteristics are stationary RFs and 

their ACF can be defined as a correlation between their quantities at two locations in each sub-

domain 𝐻(𝑥, 𝑦), which is defined mathematically as 

𝜌[𝐻(𝑥𝑖 , 𝑦𝑖),𝐻(𝑥𝑗 , 𝑦𝑗)] =
COV(𝐻(𝑥𝑖,𝑦𝑖),𝐻(𝑥𝑗,𝑦𝑗))

√Var[𝐻(𝑥𝑖,𝑦𝑖)]√Var[𝐻(𝑥𝑗 ,𝑦𝑗)]
                                       (23) 

where, 𝐻𝑖 = (𝑥𝑖 , 𝑦𝑖) and 𝐻𝑗 = (𝑥𝑗 , 𝑥𝑗) are the 𝑖  and 𝑗  coordinates of the RFs, COV (•) is the 

covariance function and Var (•) denotes the variance function. According to relevant literature, 

DeGroot and Baecher (1993) adopted the Maximum Likelihood Method to estimate the 

corresponding ACF of the soil shear strength, while Phoon and Ching (2008)  estimated the ACF 

parameters using the method of moments. In general, it is extremely difficult to acquire enough 

reliable data for specifying and calibrating experimental ACFs of the soil properties due to 

challenges related to site investigation which is needed to obtain large quantities of geostatistical 

data. Hence, due to sparse geostatistical data, theoretical ACFs are commonly applied as 
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alternative functions to characterize the spatial variability of the soil properties (Li and Lumb 1987; 

Li et al. 2016). Based on the previous research carried out within the concept of the RF theory, the 

most commonly used theoretical auto-correlation function for simulating inherent spatial 

variability in geo-slope structures is single exponential (SNX) function (Griffiths and Fenton 2004; 

Li et al. 2014; Dyson and Tolooiyan 2019). Thus, in this study, the SNX function is used, which 

can be expressed as 

𝜌(𝜏𝑥, 𝜏𝑦) = exp[−2(
𝜏𝑥

𝛿ℎ
+

𝜏𝑦

𝛿𝑣
)]                                                 (24) 

where, 𝜌(𝜏) is the correlation coefficients, the 𝜏𝑥 =∣ 𝑥𝑖 − 𝑥𝑗 ∣ and 𝜏𝑦 =∣ 𝑦𝑖 − 𝑦𝑗 ∣ are the absolute 

distances between two spatial locations in horizontal and vertical directions, respectively; 𝛿ℎ and 

𝛿𝑣 are the scales of fluctuation in horizontal and vertical directions, respectively. The scale of 

fluctuation 𝛿  is used to determine the distance within which the random quantities are highly 

correlated (Vanmarcke 2010). A small value of 𝛿  represents characteristics of a highly 

heterogeneous soil, while a larger 𝛿  signifies the properties of soil with a more homogenous 

structure. It is significant to estimate an appropriate value of 𝛿 , which plays a crucial role in 

quantifying the spatial variability of the soil properties at field scales. Many researchers (Jaksa  et 

al. 1999; Phoon 2008) studied different approaches of determining the value of scale of fluctuation 

𝛿 for soil properties and suggested that the scale of fluctuation of the undrained shear strength 

parameter, 𝑆𝑢 , for clayey soil is typically within the horizontal range of 1.0 ∼ 92.4 m and the 

vertical range of 0.1 ∼8.0 m, respectively. In this work, similar values for 𝑆𝑢  are used for 

simulations.  
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The Cholesky matrix decomposition (CMD) method (Jiang et al. 2014; Liu et al. 2017) is used to 

generate RFs in this work, which is easily implementable. Firstly, the domain Ω is discretized into 

elements of the RF with the centroid coordinates of the elements specified by (𝑥𝑖 , 𝑦𝑖). Therefore, 

the autocorrelation matrix 𝑪𝑛×𝑛 , representing the spatial variability of the properties, can be 

expressed as 

𝑪𝑛×𝑛 =

[
 
 
 

1 𝜌(𝜏𝑥12
, 𝜏𝑦12

) … 𝜌(𝜏𝑥1𝑛
, 𝜏𝑦1𝑛

)

𝜌(𝜏𝑥21
, 𝜏𝑦21

) 1 … 𝜌(𝜏𝑥2𝑛
, 𝜏𝑦2𝑛

)

⋮ ⋮ ⋱ ⋮
𝜌(𝜏𝑥𝑛1

, 𝜏𝑦𝑛1
) 𝜌(𝜏𝑥𝑛2

, 𝜏𝑦𝑛2
) … 1 ]

 
 
 

                                    (25) 

where, 𝜌(𝑥𝑖𝑗 , 𝑦𝑖𝑗) is the auto-correlated coefficient of quantities between the two spatial locations 

in two dimensions, where 𝜏  values represent the absolute distances between the centroid 

coordinates of the 𝑖th particle and the 𝑗th particle in horizontal and vertical directions.  

Subsequently, the auto-correlation matrix 𝑪𝑛×𝑛 can be decomposed into the product of a lower 

triangular matrix 𝑳 and a conjugate transpose 𝑳𝐓 as follows 

𝐋 ∙ 𝐋𝐓 = 𝑪𝑛×𝑛                                                                        (26) 

where, 𝐋 is the lower triangular matrix with a dimension of 𝑛 × 𝑛. Then, a standard Gaussian RF 

𝑿𝐺  is derived as 

𝑿𝐺(𝑥, 𝑦) = 𝐋 ∙ 𝜉𝑖 (𝑖 = 1,2,… , 𝑁)                                           (27) 

where 𝑖 is the number of standard Gaussian RF, 𝜉𝑖  is a sample matrix obtained by arranging the 

vector of 𝑛  independent standard normal samples as 𝑚  vectors with dimension of 𝑛 . 

Subsequently, the standard Gaussian RF 𝑿𝐺  can be used to generate the Non-Gaussian RF 𝑿𝑁𝐺  of 

desired values by the isoprobabilistic transformation method. In this paper, the shear strength 
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parameter (Su) is considered to be lognormally distributed, the lognormal RF 𝑿𝐿𝑁 can be generated 

by 

𝑿𝐿𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝[𝑿𝐺(𝑥, 𝑦)] (𝑖 = 1,2,… , 𝑁)                                (28) 

The procedure can be repeated 𝑁 times to obtain 𝑁 simulations of the RF. 

An RF mesh is generated for a sampling process. The CMD method is employed and a 

computational algorithm is written to obtain the random samples over the RF mesh. Then, the 

samples are mapped onto the material points in the MPM (as shown in Fig. 5). The transmission 

process is based on the spatial relationship between material point and RF mesh element (e.g. a 

position-to-position mapping process), which is similar to the methodology used in the random 

FEM (Gironacci et al. 2018; Mousavi Nezhad et al. 2018; Huang et al. 2020). Therefore, the 

sample values of each element in the RF mesh are assigned to the material points surrounded by 

that element.   

 

Fig. 5 Schematics of the mapping process of a RF 
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Workflow of the method 

The main workflow of simulations with the proposed computational framework in this study can 

be summarized in the following steps 

1. Statistical parameters of the RF and MPM models are introduced to the computational 

framework.   

2. One isotropic Gaussian RF 𝑿𝐺(𝑥, 𝑦) is generated and subsequently, it is transformed into 

the lognormal RF  𝑿𝐿𝑁(𝑥, 𝑦) in the physical space using Eq. (28).  

3. The generated sample values are mapped onto the material points and the first simulation 

of the landslide process is performed to determine influence distance and runout distance.   

4. Then, the next RF  is generated and updated for the next iteration. It should be noted that 

after each simulation, the statistical features of the MPM model output (I and R) are 

calculated. Stages 2 and 3 of the simulations are repeated until convergence of the first and 

second moments of the model outputs occurs. It is assumed that the convergence occurs 

when the differences in the calculated values for mean and variance obtained in consequent 

MC iterations become less than 10-3.  

5. All calculated data (I and R) are processed to compute mean values and variances, which 

are compared with the corresponding deterministic analysis to investigate the effect of 

spatial variability. 

The used MPM code is modified from the openly available MPM3D code (Zhang et al. 2016) 

(http:\\github.com\xzhang66\MPM3D-F90). The application of the code for landslide analysis has 

been previously exercised by other researchers (e.g., Li et al. 2016; Liu et al. 2019). In this paper, 

the MPM3D code is further extended to simulate large deformation behavior in landslide 

phenomena by allowing the mapping of different generated RFs for soil shear strength onto the 
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material points. Subsequently, the model can produce estimates of the landslide influence distance, 

𝐼, and runout distance, 𝑅, for each soil variability condition, and associated hazard zone can also 

be evaluated for the nearby structures that could potentially be influenced by the disaster.  

Application to boundary value example 

Geometry of the model slope 

In this section, a simple clayey slope is modeled to verify the developed framework in simulating 

the landslide failure mechanism. The slope is considered to have a 5 m height with a length of 25 

m and a slope gradient of 45∘ relative to the horizontal direction. The clay material is also assumed 

to have a strain-softening behavior. Fig. 6 shows the geometries of the model slope with the 

corresponding background meshes and material points. The background mesh is extended to 100 

m to offer enough space for possible extensive runout distances of the landslide. A frictional 

contact under the slope base is assumed with a frictional coefficient of 0.3 taken from Bandara and 

Soga (2015) who presented the characteristics of a similar type of soil. A roller boundary condition 

is set at the left boundary of the domain to allow vertical material points’ movements. Similar 

model slope was previously analyzed with the deterministic MPM (Bandara and Soga 2015; Wang 

2017) as well as the SPH method (Nonoyama et al. 2015; Zhang et al. 2020; Huang et al. 2020); 

however, the focus of this study is to investigate the effects of spatial heterogeneity in ground’s 

mechanical properties on the large deformations.  
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Fig. 6 The initial geometry, boundary conditions, and background mesh of the clay slope 

RF and MPM model parameters 

Recent studies conducted by Mori et al. (2020) showed that the post-failure behavior of landslides 

is predominately controlled by the soil’s shear strength. The undrained shear strength 𝑆𝑢 of the 

clay is assumed as the spatially random variable; while, Young’s modulus 𝐸, Poisson’s ratio 𝜈, 

and other soil properties are assumed to be constants as it has been found that their contributions 

on landslide influence distance or runout distance are not significant (Cheuk et al. 2013). Table 1 

shows the statistical parameters of 𝑆𝑢  including its mean value 𝜇 and COV. Furthermore 𝑆𝑢  is 

assumed to have a logarithmic normal distribution to avoid negative quantities in its sample values. 

The 𝑆𝑢 is interpreted as the peak undrained shear strength 𝑆𝑢𝑝. The range of fluctuation in the 

horizontal direction 𝛿ℎ (varying from 1.0 ∼ 92.4 m in the literature for similar soils, e.g. Phoon 

2008; Zhang et al. 2018) is selected from 1.0 m (the isotropic soil profile) to 48.0 m (the layered 

soil profile) because it is closely associated with the uncertainty of slope failure behavior, and the 

scale of fluctuation in the vertical direction 𝛿𝑣  (usually around 0.1 m to 3 m) is set as 1.0 m 

(Vanmarcke 2010; Zhang et al. 2018).  The properties’ values for the representative clay material 

are summarized in Table 2, which are consistent with previous literature (e.g Wang 2017; Yuan et 

al. 2020). The constitutive model parameter 𝜀𝑝𝑝 is also given a value of 0.1 (Shi et al. 2019). It 
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should be mentioned that the soil deposit in the presented study is an idealized deposit assuming a 

soil type that the residual strength of 4 kPa is universally applicable to all elements within the 

deposit. Therefore, in an unlikely condition if the randomized Sup gets below 4 kPa, it is replaced 

by the adopted residual value. 

Table 1. Statistical parameters of the undrained shear strength 𝑆𝑢 

Parameters unit Values Distribution 

Mean, 𝜇 kPa 20 

Lognormal 

COV  0.25 

Horizontal fluctuation, 𝛿ℎ m 1, 6, 12, 24, 48 

Vertical fluctuation, 𝛿𝑣 m 1 

 

Table 2. Material properties for the clay slope analysis 

Parameters unit Values 

Solid grain density, ρ kN/m3 20 

Young’s modulus, 𝐸 kPa 1000 

Poisson’s ratio, 𝜈  0.33 

Peak undrained shear strength, 𝑆𝑢𝑝 kPa 20 

Residual undrained shear strength, 𝑆𝑢𝑟 kPa 4 

 

As for the model settings, each realization of 𝑆𝑢𝑝 is generated according to the spatial coordinates 

(𝑥𝑖 , 𝑦𝑖) at mid-points of the material points in the background mesh in the two dimensions, and 

then they are mapped onto the material points for calculations. The MPM model contains 11224 

material points and 26052 cells, with lengths of 0.1 m for each material point and 0.2 × 0.2 m for 
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all four-node quadrilateral background cells, resulting in 4 material points in each cell. The 

minimum values of the scale of the fluctuation (𝛿ℎ or 𝛿𝑣 = 1 m) are much larger than 2 times of 

the cell size (0.2 × 0.2 m), which is consistent with recommendations of Li and Der Kiureghian 

(1993) to prevent loss of information about the spatial variability of the random field. The landslide 

is triggered by applying gravitational loading. The time increment is 7.5 × 10-4 s. The total time 

for the calculation is 15 s when soil deposits become stable according to kinematic energy and 

unbalanced forces of the system (Kafaji 2013). 

Deterministic analysis 

Fig. 7 shows the final configuration of a homogeneous landslide computed by deterministic MPM 

modeling. According to the results, several blocks are formed during the failure process and at t 

=15.0 s the landslide is completely deposited with an extensive runout motion and substantial 

retrogressive failure at a new-formed backscarp. For a quantification of the failure consequence, 

the runout distance with 9.32 m length and influence distance with 18.82 m length can be observed 

in this figure, which elaborates how long the sliding mass moves and how far the failure 

retrogresses backwards from the crest of the initial slope to its new-formed backscarp. The results 

give failure shapes similar to those predicted in previous works, where the influence distance is 

close to the finding in Wang (2017) (i.e., 9.2 m), and the corresponding runout distance is close to 

the results of Yuan et al. (2020) (i.e., 18.57 m).  
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Fig. 7 Initial and final configuration of landslide by deterministic analysis 

Typical post-failure process of heterogenous landslides  

The influence of spatial variability of undrained shear strength 𝑆𝑢𝑝  on the landslide has been 

assessed by assuming a COV of 0.25 for peak undrained shear strength 𝑆𝑢𝑝 and different scales of 

fluctuation (with all other parameters kept identical with the deterministic analysis). In this section, 

three typical samples of the 𝑆𝑢𝑝 variations over the slope domain are shown in Fig. 8, where the 

statistically isotropic soil profile RF1 (𝛿ℎ = 𝛿𝑣 = 1m), an anisotropic soil profile RF2 (𝛿ℎ =

6 𝑚, 𝛿𝑣 = 1 m), and a layered deposited soil profile RF3 (𝛿ℎ = 48 𝑚, 𝛿𝑣 = 1 m) can be seen. In 

these figures, the red regions denote the larger 𝑆𝑢𝑝 values, indicating stronger zones, while the 

blue parts represent the relatively smaller 𝑆𝑢𝑝 values for weaker zones of the slope. In this study, 

the soil properties are chosen to represent a slope with a very high probability of failure (close to 

1.0), in order to investigate the post-failure motions. It should be noted that a particular distribution 

of a geotechnical RF may lead to predictions demonstrating that the slope is stable, and thus, no 

post-failure behavior is observed (Liu and Wang 2021). However, consideration of these cases is 

out of the scope of this study. Given that the main focus here is on analyzing post-failure responses, 

only cases with a material point displacement larger than 1 m are considered as landslide cases 

and investigated. 
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(a)  𝛿ℎ = 𝛿𝑣 = 1 m; 

 

(b)  𝛿ℎ = 6 𝑚, 𝛿𝑣 = 1 m; 

 

(c) 𝛿ℎ = 48 𝑚, 𝛿𝑣 = 1 m; 

Fig. 8 Realizations of 𝑆𝑢𝑝 for three example fluctuation scales  

 

Fig. 9 The initial vertical stress field of the boundary value problem 
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(a) RF1 (𝛿ℎ = 𝛿𝑣 = 1 m); 

 

(b) RF2 (𝛿ℎ = 6 𝑚, 𝛿𝑣 = 1 m);  

 

(c) RF3 (𝛿ℎ = 48 𝑚, 𝛿𝑣 = 1 m); 

Fig. 10 The variations of the plastic strain invariant and the distributions of the undrained shear strength, 

for models with different RFs, at different stages of the analysis leading to failure 
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At the start of the analysis, firstly, by applying a self-weight of the soil mass, in-situ stresses are 

generated within the first 2 s of the simulation (see Fig. 9). As the soil self-weight is applied, the 

internal stresses start to build up near the slope’s toe which is often where failure initiates if the 

slope becomes unstable. However, because of the distribution of hard soil and soft soil within the 

slope, the failure initiates above the toe where the safety factor of slope stability Ns is lower, Ns 

(Steward et al. 2011) is defined as  

𝑁𝑠 =
𝑆𝑢

𝜌 ∙ 𝐻
(29) 

where H is the actual height of the slope, and 𝜌 is soil density. Therefore, the failure mechanism 

avoids the stronger zones for seeking out the shear path, which is along the least resistance route 

and fails along the base of the weaker zones.  

Fig 10 shows the typical post-failure movements influenced by 𝛿ℎ, horizontal heterogeneity, with 

a colored map of the plastic strain invariant and undrained shear strength, Su. Various sliding block 

shapes, a failure processes, and shear bands with different shapes in the final landslide deposits 

are predicted for different levels of material heterogeneity.  

According to the simulated results, three main stages in the heterogeneous landslide failure 

evolution are concluded: i) the first failure block, ii) the failure of the backscarp, and iii) the final 

configuration. The first failure block is formed at 4 s. At this stage, the destructuration of the first 

failure block is more pronounced in RF1 case (Fig.10a), in which more soil wedges can be 

observed in the first block comparing to that of the RF2 and RF3 case (Fig. 10b and 10c). Due to 

the large degree of horizontal homogeneity (𝛿ℎ = 48 𝑚), the first failure block in RF3 is relatively 

bigger and more coherent than in the RF1 and RF2 cases. It is demonstrated that the layered 

deposited slope is prone to fail in larger/more intact sliding blocks at the initial failure stage 
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because of the existence of a relatively intact weak intercalation layer (Ma et al. 2018), while the 

isotropically deposited slope tends to involve more fragmented failure blocks. Subsequently, 

because of the removal of the support from the soil mass at the backscarp of the first failure block, 

the failure of the backscarp is triggered and successive failure blocks are formed. Damaged blocks 

are progressively developed in weak zones until a full failure of the landslide takes place. The ‘V-

shaped’ developed plastic shear bands are distinctively notable in RF1 and RF2, in which several 

ridges are created by horsts which are separated by grabens. According to the 2014-updated Varnes 

classification of landslides (Hungr et al. 2014), this type of spreads could be described as an 

upward progressive failure, which causes a horizontal failure surface propagation upward. The 

grabens and horsts are the consequence of dislocation, translation, and subsidence of the soil mass 

above the failure surface. This is a common feature in this type of landslide, such as the Sainte-

Monique sensitive clay landslide in 1994 (Locat et al. 2015). The phenomenon can be explained 

by higher horizontal heterogeneity in RF1 and RF2 compared with RF3, which leads to smaller 

failure blocks in the sliding mass (divided by the shear bands) following the failure process. Unlike 

the ‘V-shaped’ shear band in RF1 and RF2 cases, in the RF3 case, shear bands take mostly a 

circular shape as the rotational failure continues to propagate. At the last stage, the basal line of 

the global failure (which mainly horizontally propagates) can be observed in the largest plastic 

shear strain contours. Other observations include, i) the shapes of the shear bands and formation 

of the failure blocks are diverse (as discussed above); ii) the numbers of apparent failure blocks in 

different cases are different. The landslide associated with RF1 tends to form higher number of 

sliding blocks (i.e. 10 blocks, as in Fig. 10(a)), while in comparison the landslide associated with 

RF3 appears to have resulted in a lower number of the failure blocks ( i.e. 7 blocks, as in Fig. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0002308


ASCE International Journal of Geomechanics. Submitted Dec 2020; Published Jan 2022. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0002308  

29 

 

10(c)). Also, it can be seen that the failure blocks in RF1 are more disintegrated, whereas the 

corresponding blocks in RF3 are less fragmented.  

According to the above analysis, the influence of heterogeneity on the post-failure behavior of 

landslides is significant. One main conclusion is that the heterogeneous landslide seeks for failing 

through the weakest zones which can be observed by the shear bands forming across these areas 

for discrete failure blocks. Because the strata’s structure is different in these slopes, the shear band 

formations, where ruptures occur, are varied. With the increase of the horizontal scale of 

fluctuation, 𝛿ℎ, the landslides tend to involve larger and fewer intact failure blocks. For the smaller 

degree of horizontal homogeneity (i.e., RF1 and RF2), there is a tendency for forming multiple 

failure blocks because it is easier to seek out a failure path through the weaker soils and avoid the 

strong soils. For a larger degree of horizontal homogeneity (i.e., RF3), the failure path tries to 

propagate through the weak zones, and bigger blocks are formed. Note that the results of each 

realization of RF may differ due to the distribution of shear strength. Consequently, multiple MC 

simulations are required to reflect the possible post-failure behaviors of heterogeneous landslides.  

Statistical analysis of the influence zone 

This section is to investigate the influences of spatial variability (i.e., horizontal heterogeneity, 

COV) on the studied landslide influence zone. The undrained shear strength Su of the clay is 

modeled by RFs based on the statistical moments presented in Table 1. For analyzing the 

uncertainties of influence distance and runout distance of landslides, iterative calculations based 

on MC simulation are conducted. Firstly, the isotropic case with 𝛿ℎ = 𝛿𝑣 = 1 m and COV=0.25 

is used to check the convergence of the MC simulation. Fig. 11 shows the statistical mean values 

and standard deviations of influence distances I and runout distances R of the landslides, plotted 

as functions of the number of the MC simulations. 1000 samples of spatially varying Su profiles 
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are generated and analyzed. Based on the convergence criterion, it is shown that the convergence 

is achieved after around 600 simulations with a variance of 2.24 and 1.75 for I and R, respectively. 

The convergence criteria have been checked for small and large scales of fluctuations. The results 

for the cases with large scale of fluctuation converge slower (i.e., as the scale of fluctuation 

increases, the number of MC samples for converging the stochastic model output increases). 

Eventually, it is observed that the 1000 MC simulations can produce reasonably stable/reliable 

results in all cases.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 11 Monitoring the convergence of MC simulations: (a) variation of calculated mean value of 𝐼 with 

number of simulations; (b) variation of normalized standard deviation of 𝐼 with number of simulations; 

(c) variation of calculated mean value of 𝑅 with number of simulations; (d) variation of normalized 

standard deviation of 𝑅 with number of simulations 

Effect of the horizontal heterogeneity 

Statistical analyses of the influence zone of heterogeneous landslides considering different level 

of horizontal heterogeneity are performed using results from the MC simulations, where each 

simulation comprises 1000 samples. Fig. 12a plots the probability density histograms for 𝐼 from 

the analyses of the isotropic RF case (𝛿ℎ = 𝛿𝑣 = 1 𝑚). In the figure, the horizontal coordinate 

represents the calculated influence distance or calculated runout distance, the left vertical 
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coordinate represents the probability density functions, and the right coordinate represents the 

cumulative probability function. The probability density function is obtained by fitting both 

Normal and Lognormal distribution functions based on the computed values. It can be seen that 

both distributions could reasonably fit the histogram. According to the Chi-square goodness of fit 

test, it is confirmed that the Normal distribution could be adopted to characterize the influence 

distance for all the involved cases at a 5% level of significance. As such, the Normal distribution 

function will be used to approximate the probability density function of the computed distance. 

Fig. 12a shows that the estimated mean value of 𝐼 for 𝛿ℎ = 1.0 m is 10.15 m. In comparison, the 

deterministic analysis underestimates the influence distance with 9.32 m, giving an unconservative 

estimation of the potential retrogressive failure. This is a large discrepancy in post-failure motions 

between the homogeneous landslide and the heterogenous landslide.  Because of the soil 

heterogeneity, the values for the influence distance mostly varies from 6 m to 14 m, and the 

maximum influence distance can reach up to 17.3 m. This demonstrates the high degree of 

uncertainty in prediction of the influence distance, that necessitates incorporating the effect of 

natural heterogeneity of soil in modeling of post-failure process.  

  

                          (a) 𝛿ℎ = 𝛿𝑣 = 1 m                 (b) Effect of 𝛿ℎ on the probability density function 
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(c) Effect of 𝛿ℎ on the cumulative density function          (d) Influence of 𝛿ℎ  on mean value 

Fig. 12 Histogram, probability density functions, cumulative density functions, and mean values of the 

influence distance I 

   

                          (a) 𝛿ℎ = 𝛿𝑣 = 1 m                 (b) Effect of 𝛿ℎ on the probability density function 
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(c) Effect of 𝛿ℎ on the cumulative density function          (d) Influence of 𝛿ℎ  on mean value 

Fig. 13 Histogram, probability density functions, cumulative density functions, and mean values of the 

runout distance R  

To comprehensively study the effect of 𝛿ℎ on the influence distance, the corresponding normal-

fitted probability density function curves are plotted and compared in the Fig. 12b. Among the 

different 𝛿ℎ, it can be found that horizontal heterogeneity of shear strength in the slope not only 

causes variations in the mean values of I but also affects the shape of the corresponding probability 

density function. The probability density function curves become wider, lower, and farther to the 

right with the increase of 𝛿ℎ , which indicates that the increasing of 𝛿ℎ  would increase the 

probabilities of occurrence of extreme case of the studied landslide in terms of influence distance. 

For instance, the probability of 𝐼 =18 m in the 𝛿ℎ = 48 m case is much higher than the other cases. 

According to the statistics (Fig. 12d), it shows that the mean values of 𝐼 slightly increase with 

increasing 𝛿ℎ, which indicates as the horizontal heterogeneity decreases the landslides tend to form 

a longer influence distance. The residual part of the topside tends to be smaller with smaller 

horizontal heterogeneity. Based on the cumulative density function curves (Fig. 12c), the 

probability of results exceeding the deterministic prediction is determined. The gaps between the 
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deterministic analysis and the mean value of the RF cases are considerable, where about 68% of 

all samples exceed the deterministic case (𝐼 ≥ 9.32 m); in particular, results of about 72% of 

samples with 𝛿ℎ = 48 m exceed the deterministic analysis. 

As shown in Fig. 13a, the probability density histogram represents the calculated R of the isotropic 

RF case from 1000 MC simulations. Similar with the computed I, the values for the R vary 

significantly, which is mostly in the range of 17 m to 24 m; the minimum runout distance is 15.08 

m, and the maximum runout distance can reach up to 27.00 m; the mean value is 20.08 m. In 

comparison, the deterministic analysis particularly underestimates the runout distance with 18.82 

m, which may give an nonconservative/unsafe estimation of the potential risks for the structures 

located in the vicinity of slopes. As previously described, the Normal distribution function is 

adopted to approximate the probability density function of the computed distance. Through 

comparing the Normal-fitted probability density function curves (Fig. 13b), it is seen that 𝛿ℎ of 

shear strength in the slope not only causes variations in the mean values of R but also affects the 

shape of the corresponding probability density function. The probability density function curves 

become wider, lower, and farther to the right with the increase in 𝛿ℎ. The mean values of 𝑅 tend 

to increase with increasing 𝛿ℎ (i.e., decreasing horizontal heterogeneity), and consequently the 

landslides tend to form relatively longer runout distance (Fig. 13d). The maximum mean value of 

22.26 m is obtained from the case of  𝛿ℎ = 48 𝑚. This could partly be explained by a common 

unfavorable geological structure in bedding landslides, in which large intact and strong 

geomaterials are overlying the relatively weak geomaterial layers (weak intercalated layer). This 

type of geological structure could easily lead to large-scale long runout landslides (Ma et al 2018). 

Furthermore, extreme cases (i.e., landslide with exceptionally long runout) could happen with 

larger 𝛿ℎ. Based on the cumulative density function curves (Fig. 13c), the probability of exceeding 
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the deterministic analysis is obtained, which shows about 75% of all samples exceed the 

deterministic case (𝑅 ≥ 18.82 m). Therefore, the influence of spatial variability of undrained shear 

strength on the influence zone is not insignificant. The mean values of both computed 𝐼 and 𝑅 in 

landslides tend to increase with increasing 𝛿ℎ of the ground profile, and the standard deviation 

(variance) generally enlarges with increasing 𝛿ℎ as well. It indicates that the uncertainty of the 

influence zone (𝐼  and 𝑅 ) will be reduced when 𝛿ℎ  decreases. In other words, neglecting the 

horizontal heterogeneity of shear strength will lead to underestimation of the landslide influence 

zone. 

Effect of the COV 

For the previous analyses, the COV of undrained shear strength 𝑆𝑢 are fixed as shown in Table 1. 

In order to discuss the effect of the COV on the probabilistic results, different values are used for 

the COV of 𝑆𝑢. According to the previous studies on uncertainty properties of 𝑆𝑢, the COVs are 

selected within the bounds of 0.1 ≤ COV ≤ 0.5 (Phoon and Kulhawy, 1996; Phoon, 2008; Zhang 

et al. 2018).  

Fig. 14 presents the Normal-fitted mean values and standard deviations of the influence distance 

and runout distance in the landslides with different COVs of the 𝑆𝑢 and 𝛿ℎ = 𝛿𝑣 = 1 m. It can be 

clearly observed that the COV has a non-negligible effect on the mean value and standard deviation 

of the 𝐼 and R. With the increasing of COV, the range of the influence distance as well as runout 

distance increase, which means the increasing COV will enlarge the uncertainty and randomness 

of the landslide’s influence zone. As shown in Fig. 14, the standard deviation of both 𝐼 and R 

increases with the increase of COV. These results are consistent with those from other studies 

(Zhang et al. 2020). As for a small COV, the mean value of runout distance will be more 
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conservative, and large values of COV result in a bigger runout distance. Because higher COV 

values of shear strength would lead to larger range of shear strength in some parts of the slope, the 

uncertainty of associated post-failure motions would increase as well. Consequently, much larger 

influence zone is revealed by considering the large degree of variation compared to the relatively 

small heterogeneity case.  

 

Fig. 14 Effect of the COV (0.1-0.5) on the influence distance and runout distance for isotropic cases 

(𝛿ℎ = 𝛿𝑣 = 1 m) 

Hazard zoning of landslides  

Apart from 𝐼 and R predictions for heterogenous landslides, a practical hazard zoning analysis is 

carried out for common structures, e.g. buildings, railway, etc., that are located at the slope toe or 

crest and might be susceptible to landslide post-failure. To rank the potential hazard, the likelihood 

classification of disaster events proposed by Lacasse and Nadim (2011) is adopted (Table 3). This 

study considered exceedance probabilities of 0.1%, 1%, 10%, 50% as threshold values. The 

exceedance probabilities of 𝑃(𝐼 > 𝐼𝑠) and 𝑃(𝑅 > 𝑅𝑠) obtained by Eq. (1-4) reflects the possibility 
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that a certain point along the motion path is at risk. The area potentially influenced by the landslide 

is classified into five groups, namely: extremely high, high, medium, low and extremely low, 

according to the range of 𝑃.  

 

Fig. 15 Hazard zoning of landslides 

Fig. 15 shows a set of 𝐼 and R exceedance probability curves with different 𝛿ℎ and COV= 0.25, in 

which the potential hazard zoning of the landslide is highlighted according to the classification. 

Each curve in the figure approximates the exceedance probability that the failure would affect the 

structure at different distances away from the slope’s toe or crest (𝑅𝑠 and 𝐼𝑠). According to the 

results, the 𝑃(𝐼 > 𝐼𝑠) decreases as the distance from the initial crest of the slope increases, and 

𝑃(𝑅 > 𝑅𝑠) decreases as the distance from the initial toe of the slope increases. It can be found that 

among the different 𝛿ℎ  cases, bigger 𝛿ℎ  tends to form a wider range of influence zone and 

constitutes higher hazard levels than the other cases, since higher probabilities can be observed at 
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the same 𝐼𝑠 or 𝑅𝑠. If considering the 𝛿ℎ=48 m as the worst case, when 𝐼𝑠 < 11.34 m and 𝑅𝑠 <

22.12 m, these areas belong to extremely high hazardous zones (specified by red shaded area in 

Fig. 15) according to the classification (see table 3). Then, the hazard zones gradually transform 

to high level (specified by orange shaded area) at 11.34 𝑚 < 𝐼𝑠 < 15.20 m and 22.12 𝑚 < 𝑅𝑠 <

25.86 m, when the 𝑃(𝐼 > 𝐼𝑠) and 𝑃(𝑅 > 𝑅𝑠) decrease from 50% to 10%. When the exceedance 

probability decreases to approximately 1%, 𝐼𝑠 = 17.96 m and 𝑅𝑠= 28.34 m are taken as boundaries 

to separate the low and medium hazard levels, when considering the worst cases. 

For illustration, by assuming that there are structures located from point A to point F at different 

distances away from the initial toe of the slope, a random heterogeneous case has been modeled. 

It can be easily found that the structures A, B, C would certainly be affected by the landslide 

motion at the final stage. However, the structure C would not be affected if we only consider the 

deterministic analysis. The range of the deterministic analysis is comparably limited, while 

considering the spatial variability the area remains at high hazard level when the 𝐼 is larger than 

9.32 m and R is larger than 18.82 m. For instance, the structures D and E still face the potential 

impacts from the landslide, because they fall in the medium and low level zones, respectively. As 

for the extremely low hazard level, the structure F should be constructed at least 30 m away from 

the toe to be safe. Based on the above hazard zoning analysis, the proposed method can be applied 

as a practical measure, serving as a disaster indicator for hazard management and mitigation plans. 
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Table 3. Event likelihood classification (adapted from Lacasse and Nadim (2011)) 

Verbal description 

of uncertainty 
Description 

Event 

probability 

Virtually certain 

Event, owing to known physical conditions or processes 

that can be described and specified with almost 

complete confidence 

0.999 

Very likely 
Event is highly likely, but may not occur, although one 

would be surprised if it did not occur 
0.990 

Likely Event is likely, but may not occur 0.90 

Completely 

uncertain 

There is no reason to believe that one outcome is any 

more or less likely to occur than the other 
0.50 

Unlikely  Event is unlikely, but it could occur 0.10 

Very unlikely 
The possibility cannot be entirely ruled out on the basis 

of physical or other reasons 
0.01 

Virtually 

impossible 

Event, owing to known physical conditions or processes, 

can be ruled out with almost complete confidence 
0.001 

    

Conclusions 

With the current changes in climate, severe and rapid rainfalls, seismic excitations, etc., many 

natural slopes are susceptible to landslide risk. Hence understanding post-failure behavior of 

landslides is significantly important as it paves the way for the prediction of possible catastrophic 

consequences and timely planning of the disaster mitigation measures. To this end, the main aim 

of this study was to investigate the post-failure behavior and the probable influence zone in the 

case of landslides; and, as such the soil properties have been chosen to represent a slope with a 

very high probability of failure (close to 1.0) to investigate the post-failure motions. The paper 
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proposes the use of a new stochastic numerical modeling framework, on the basis of the material 

point method (MPM) and random field (RF) theory, to: i) quantify the uncertainties of RF 

parameters (𝛿ℎ and COV) of shear strength employed in the large deformation geotechnical model; 

ii) quantitatively evaluate the exceedance probability of influence zone for heterogeneous 

landslides; iii) plot a practical landslide hazard zoning map in terms of disaster mitigation. The 

effects of soil inherent heterogeneity in the post-failure modeling of landslides were 

comprehensively investigated. The main conclusions obtained from the analyses presented in this 

paper can be summarized as follows: 

1. The spatial variability of 𝑆𝑢  notably influences the failure mode of the landslide, and 

consequently its post-failure behavior and influence zone. Different soil profile compositions 

in the slope result in different failure paths and mechanisms. A slope with larger 𝛿ℎ would 

tend to experience larger failure blocks and longer runout/influence distances in a landslide 

failure scenario. 

2. After comparing the results of both homogeneous and heterogeneous models, it is found that 

with the condition that the 𝑆𝑢r = 4 kPa relative to 𝑆𝑢p = 20 kPa and COV= 0.25, the 

homogeneous soil profile yields unsafe predictions leading to an underestimation of the 

landslide influence zone. While a heterogeneous soil profile in a slope under landslide 

conditions would show significant variations in the influence zone. Furthermore, a much 

larger influence zone is predicted by considering the large COV of the shear strength 

compared to the case with relatively small heterogeneity. This demonstrates the necessity to 

take soil spatial heterogeneity into consideration for post-failure modeling of the landslides. 

3. The proposed hazard zoning framework can be considered as a practical tool to facilitate the 

evaluation of hazard levels concerning the impacts of a landslide on neighboring structures 
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or facilities by using a set of exceedance probability curves. The approach allows quantitative 

disaster assessments associated with landslide instability, hence enabling hazard zoning or 

priority ranking for various mitigation measures considering the uncertainty and/or tolerable 

risk levels. 

Although the framework is used for simulation of a univariate RF of a specific slope, it is a general 

framework and can be extended to consider various soil properties as well as precipitation, seismic 

acceleration as multivariate geotechnical RFs. Other slope geometries also can be replaced in this 

framework if the main consideration is impacts/hits on nearby structures by extensive runout or 

retrogressive failure.  

Data Availability Statement 

All data, models, and code generated or used during the study appear in the submitted article. 
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