
L. Aceto and M.R. Mousavi (Eds.): PACO 2011
EPTCS 60, 2011, pp. 36–55, doi:10.4204/EPTCS.60.3

A Process Algebra for Supervisory Coordination

Jos Baeten Bert van Beek Allan van Hulst Jasen Markovski∗

Department of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

{j.c.m.baeten,d.a.v.beek,ahulst,j.markovski}@tue.nl

A supervisory controller controls and coordinates the behavior of different components of a com-
plex machine by observing their discrete behaviour. Supervisory control theory studies automated
synthesis of controller models, known as supervisors, based on formal models of the machine com-
ponents and a formalization of the requirements. Subsequently, code generation can be used to
implement this supervisor in software, on a PLC, or embedded microprocessor. In this article, we
take a closer look at the control loop that couples the supervisory controller and the machine. We
model both event-based and state-based observations using process algebra and bisimulation-based
semantics. The main application area of supervisory control that we consider is coordination, re-
ferred to as supervisory coordination, and we give an academic and an industrial example, discussing
the process-theoretic concepts employed.

1 Introduction

Control software development becomes an important issue due to the ever-increasing machine com-
plexity and demands for better quality, performance, safety, and ease of use. Traditionally, the control
requirements are formulated informally and, thereafter, manually translated into control software, fol-
lowed by validation and rewriting of the code whenever necessary. The cycles of such a design-validate
process are both error-prone and time-consuming due to frequent ambiguities in the informal specifica-
tions. This issue gave rise to supervisory control theory [22, 9, 17], where models of the supervisory
controllers, referred to as supervisors are synthesized automatically based on formal models of the un-
controlled hardware, referred to as plant, and the model of the control requirements. Based on these
models, the control software is generated automatically. The supervisory controller observes discrete
machine behavior and sends back control signals about allowed activities. Assuming that the controller
reacts sufficiently fast on machine input, this feedback loop, depicted in Figure 1a), was originally mod-
eled as a pair of synchronizing processes [22, 9].

Plant Supervisor

Observable behavior

Control signals

Plant Supervisor

Observable events

Allowed controllable
events

Plant Supervisor

Observable states

Allowed controllable
events

a) b) c)

Observer

Figure 1: Control loop: a) general, b) with event-based, c) with state-based observations.

In this paper, we focus on the modeling of the control loop and the required process-theoretic con-
cepts to capture the underlying behavior. The main motivation for the investigation is the oversimplifi-
cation of the coupling between the plant and the supervisor in the original proposal of [22, 9], which still
∗Research funded by C4C European project FP7-ICT-2007.3.7.c.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301648112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.60.3

Baeten, van Beek, van Hulst, Markovski 37

prevails in modern state-of-the-art approaches, like [13, 11, 20, 26, 16] to name a few. Furthermore, we
consider coordination as the main application area of supervisory control, where the coordinator(s) are
implemented as supervisory controllers that ensure sequencing of events, or deadlock- and livelock-free
behavior of the plant, according to the given set of (coordinating) control requirements.

Supervisory control loop To model different aspects of the plant and the control requirements, the
discrete events that can occur are split into controllable and uncontrollable events. The former can be
disabled by the supervisor and typically model actuator activities, e.g., starting or stopping a motor. The
latter cannot be affected by the supervisor if enabled in the plant and standardly model sensor activities,
e.g., the temperature has reached a given value. We distinguish two types of prominent supervisory
control loops relying on event- and state-based observations, depicted in Figure 1b) and c), respectively.

The control loop in Figure 1b) depicts that the supervisor observes events that occur in the plant and
sends back as feedback the set of controllable events that are allowed for execution. The most prominent
operation that captures the coupling between the plant and the supervisor is automata-style synchronous
parallel composition [22, 9]. This simple operation restricts the plant by omitting (controllable) events in
the supervisor, thereby preventing synchronization and disabling the events. It was quickly realized that
this synchronization produces large supervisors that actually memorize the complete supervised behavior
as the supervisor keeps track of the state of the plant by keeping a complete history of observed events.

To mitigate the large size of the supervisor several synchronization operators were proposed that
enable the plant to independently execute uncontrollable events, provided that this does not preclude the
supervisor from correctly deducing the state of the plant [14, 13, 15, 10]. We note that there are other
models of the control loop that employ the input/output transition paradigm that require an input (set of
controllable/actuator events) from the supervisor to produce an output (uncontrollable/sensor event) from
the plant [6, 7, 25]. Nonetheless, they have been shown to be equivalent to one of the above approaches
with respect to the underlying notions [7].

What synchronous parallel composition or communication fails to model is the difference between
the two flows of information, their role, and the different goals of the plant and the supervisor. To this end,
we propose a send/receive communication to model the different flows of communication in Figure 1 and
differentiate between the contributions of the plant and the supervisor. The event-based observation flow
of Figure 1b) enables communication of all observable events, whereas the control signal flow transmits
only controllable events. In addition, this setting also supports asynchronous communication between
the plant and the supervisor, which affects almost every implementation of supervisory controllers [8].

As a solution to the problem of large supervisors, an alternative approach was proposed in [17], as
depicted in Figure 1c). The plant (or the supervisor) is augmented with an observer or a tracker that
deduces the state of the plant and submits this observed information to the supervisor. The supervisor,
based on this state-based information, acts as a lookup table and feeds the plant with the allowed control-
lable events in the observed state. In such a way, the supervisor only incorporates necessary information
in order to exercise control over the plant. Nonetheless, this feedback mechanism is not formalized
in [17] and, here, we propose to model this variant of the control loop using a process-theoretic approach
that employs root signal emission [1] to capture the state-based observations. Alternative modeling of
such control loops is by means of shared variables and synchronization [19], but such approaches do not
distinguish between the different flows of information depicted in Figure 1c).

Finally, when employing supervisory control for coordination of distributed systems, the supervisor
communicates the control actions to several components that have different physical locations. To this
end, we propose to model the feedback control signal communication from the supervisor by means of

38 A Process Algebra for Supervisory Coordination

broadcast communication [4]. To illustrate the proposed process theories that capture the behavior of the
control loops of Figure 1b) and c) we revisit two cases, where we applied supervisory coordination: 1b)
a simple case that introduces the main concepts and deals with coordination of an automated guided ve-
hicle, involving event-based observations, and 1c) a part of an industrial study dealing with maintenance
procedures inside complex high-tech printers, which employs state-based observations [18].

Process-theoretic approach The process-theoretic treatment of supervisory control theory is sustained
by a behavioral relation that captures the notion of controllability, which states that supervisory control
is possible only if the supervisor can achieve supervised behavior allowed by the control requirements
without having to disable an uncontrollable event. Prior investigations to process-theoretic treatments of
supervisory control resulted in a special prioritized synchronization operator [14, 13], while employing
failure semantics. An alternative approach replaced this special operator with a refinement relation to
characterize nondeterministic supervised behaviors [20]. In [26, 24] the refinement is given in terms of
bisimulation and in terms of simulation in [16]. A coalgebraic approach introduced partial bisimulation
as a behavioral relation suitable to define language-based controllability [23]. In essence, it states that
controllable events should be simulated, whereas uncontrollable events should be bisimulated. This no-
tion was lifted to a concurrency theory for supervisory control that succinctly captured the controllability
for nondeterministic discrete-event systems [2]. Here, we extend this framework to elaborately model
and formalize the behavior of the supervisory control loops depicted in Figure 1.

The rest of this paper is organized as follows. Section 2 revisits the process theory TCP∗ from [1] and
establishes a link between partial bisimulation and supervisory control. Section 3 shows how to model
supervisory control loop in the presented theory by applying supervisory coordination to an automated
production line. Section 4 extends the process theory to incorporate guarded commands and root signal
emission, which are employed in Section 5, where we revisit an industrial case study of coordination of
maintenance procedures in a high-tech printer. We finish with a discussion of future challenges and the
potential of applying process theory in supervisory control.

2 Process theory TCP∗

In this section we revisit the process algebra TCP∗ (Theory of Communicating Processes with Itera-
tion) [1] in which we introduce generic communication actions and we adopt partial bisimulation as a
behavioral relation. This process algebra has a rich syntax, allowing us to express all key ingredients of
concurrency theory, including termination, which enables a strong correspondence with automata theory.

Syntax We presuppose a finite data alphabet D and a finite set H of channels. We assume that A =
{c!m?nd | c∈H, m,n∈N, d ∈D}, where c!m?nd is a generic communication action. If m= n= 0, then we
treat the generic communication action c!0?0d as a basic event, possibly parameterized with data, notation
c(d). Otherwise, we handle it as an outcome from synchronization of m send and n receive actions. We
employ the standard notation for handshaking communication [1], i.e., c?d for c!0?1d, c!d for c!1?0d, and
c!?d for c!1?1d. Intuitively, these events denote that datum d is received, sent, or communicated along
channel c, respectively.

The set of process terms T is generated by the following grammar:

T ::= 0 | 1 | a.T | T ·T | T +T | T ‖ T | T ∗ | ∂E(T),

Baeten, van Beek, van Hulst, Markovski 39

1
1 ↓

2
a.p a−→ p

3
p∗ ↓

4
p a−→ p′

p∗ a−→ p′ · p∗
5

p ↓, q ↓
p ·q ↓

6
p ↓, q a−→q′

p ·q a−→q′

7
p a−→ p′

p ·q a−→ p′ ·q
8

p ↓
(p+q) ↓

9
q ↓

(p+q) ↓
10

p a−→ p′

(p+q) a−→ p′
11

q a−→q′

(p+q) a−→q′

12
p ↓, q ↓
p ‖ q ↓

13
p a−→ p′

p ‖ q a−→ p′ ‖ q
14

q a−→q′

p ‖ q a−→ p ‖ q′
15

p ↓
∂E(p) ↓

16
p

c!`?kd−→ p′, q c!m?nd−→ q′, `+ k > 0, m+n > 0

p ‖ q
c!`+m?k+nd−→ p′ ‖ q′

17
p a−→ p′, a 6∈ {c!m?nd | c!m?n ∈ E, d ∈ D}

∂E(p) a−→∂E(p′)

Table 1: Operational rules for TCP∗

where a ∈ A and E ⊆ {c!m?n | c ∈ H, m,n ∈ N}. Let us briefly comment on the operators in this syntax.
The constant 0 denotes inaction or deadlock, whereas the constant 1 denotes successful termination [1].
For each action a ∈ A there is a unary operator a. denoting action prefix; the process denoted by a.p can
do an a-transition to the process denoted by p. The binary operator p ·q denotes sequential composition
that behaves like p, followed by q only upon successful termination of p. The binary operator p+q de-
notes alternative composition or choice on the first action transition of p and q. The binary operator p ‖ q
denotes parallel composition (with generic channel communication actions); actions of both arguments
can be interleaved or, alternatively, communication takes place that keeps track of how many send or
receive actions are combined. The unary operator p∗ is iteration or Kleene star that unfolds with respect
to the sequential composition. The unary operator ∂E(p) encapsulates the process p in such a way that
all (incomplete) communication actions, e.g., c?d and c!d, are blocked for all data, so that the desired
type of communication is enforced, e.g., if we were to enforce communication between k processes on
channel c, then E = {c!m?n | 0 < m+n, m+n 6= k}.

Semantics We give semantics to the process terms by a labeled transition relation −→ ⊆ T×A×T
and a successful termination predicate ↓ ∈T. We employ infix notation and write s a−→ t if (s,a, t)∈−→
and s↓ if s ∈ ↓. We derive the transition relation and the successful termination predicate using structural
operational semantics [21], given by the operational rules in Table 1. Alternatively, we depict them as a
labeled transition system G, specified by the tuple G = (T,A,↓,−→).

We briefly comment on the rules. The successful termination constant can successfully terminate,
whereas the action prefix enables outgoing labeled transitions, as given by rules 1 and 2. Rule 3 states that
iteration can always terminate successfully, which enables sequential composition of recursive processes.
The unfolding of the iteration is with respect to the sequential composition, as given by rule 4. The
sequential composition can terminate only if both processes can do so, as given by rules 5, whereas if
only the first component can terminate successfully, it can continue behaving as the second. The outgoing
transition of the first component is the same for the sequential composition as given by rule 7. Rules 8
and 9 state that alternative composition can terminate if one of the components can terminate, whereas
the choice is made on the outgoing transitions, as stated by rules 10 and 11. The parallel composition can
terminate only if both components can do so. Rules 13 and 14 enable interleaving of transitions. Rules
15 states that encapsulation does not prevent successful termination. Rule 16 defines synchronization
which can occur on communication actions comprising at least one sending or receiving event. The
communication actions are merged to accumulate the participating send and receive parties. Finally,

40 A Process Algebra for Supervisory Coordination

rule 17 states that all (incomplete) communication actions on a given channel comprising a predefined
number of senders and receivers are blocked by the encapsulation operation.

We can easily extend the transition relation to traces of actions in A∗. For p, p′ ∈ T and t =

a1, . . . ,an ∈ A∗, we write p
t
� p′ if there exist p0, . . . , pn ∈ T such that p = p0

a1−→·· · an−→ pn = p′. By ε

we denote the empty trace a1, . . . ,an for n = 0 and p = p′. Every finite automaton can be described up to
isomorphism (and possibly by changing the communication operation) by a term in our setting, see [3].

Language-based supervision Now, we can translate the central notion of a supervisor [22, 9] in our
setting. To this end, we partition the channel names into two disjoint sets of uncontrollable U and
controllable C channels such that H= U∪C and U∩C= /0. The uncontrollable and controllable channel
names induce controllable and uncontrollable actions, respectively, given by AC , {c!m?nd | c ∈ C, d ∈
D} and AU , {u!m?nd | u ∈ U, d ∈ D}. Next, we define the (prefix-closed) language recognized by the
process term p or, alternatively, the automaton represented by p, as L(p) , {t ∈ A∗ | there exists p′ ∈
T such that p

t
� p′}. Note that traces do not need to end with successful termination. We denote by

LL′ , {tt ′ | t ∈ L, t ′ ∈ L′} the concatenation of the languages L and L′.
Recall that the supervisor cannot achieve the control requirements by forbidding uncontrollable

events, when synchronizing with the plant. Suppose that the plant, the control requirements, and the
supervisor with respect to the former are determined by the languages recognized by the process terms
p,r,s∈T, respectively. If the operation modeling the control loop is denoted by p/s, then L(p/s)⊆ L(p)
and L(p/s) ⊆ L(r), where we refer to p/s as the supervised plant. We note that if strict equality holds,
then the control requirements can be achieved completely. Often, this is not the case, so one attempts
to synthesize a maximally-permissive supervisor, which makes L(p/s) as large as possible with respect
to inclusion. For deterministic systems, this supervisor is unique, equal to the union of all possible su-
pervisors [22, 9], whereas for nondeterministic systems, a unique maximally-permissive supervisor in
general does not exist [2]. For standard supervisory control [22, 9], the operation that models the con-
trol loop p/s is the full synchronous parallel composition of automata [22, 9]. That s does not disable
uncontrollable events is ensured by requesting that p/s is controllable with respect to p, expressed as
L(p/s)U∩L(p)⊆ L(p/s) [22, 9]. Controllability is interpreted as follows. If we observe a desired trace
in the plant followed by an uncontrollable event, then the supervisor cannot request that this uncontrol-
lable event should be disabled after allowing that trace. If r is controllable with respect to p, then one
can guarantee the existence of a supervisor s, achieving the desired controlled behavior r by restricting
the plant p by synchronization, i.e., L(p/s) = L(r).

Nondeterminism and partial bisimulation The disadvantages of working in the language domain
have been discussed on many occasions, e.g., see overviews in [13, 11, 2, 1]. Therefore, a proposal
was made in [2] to lift controllability to support full nondeterminism in a process-theoretic setting. The
underlying behavioral relation is partial bisimulation [23, 2], which is parameterized with a bisimula-
tion actions set B ⊆ A that denotes which actions are to be bisimulated, whereas the other actions are
simulated.

Definition 1 A relation R⊆T×T is a partial bisimulation with respect to a bisimulation action set B⊆
A, if for all (p,q) ∈ R it holds that:

1. if p ↓, then q ↓;

2. if p a−→ p′ for some a ∈ A, then there exists q′ ∈ T such that q a−→q′ and (p′,q′) ∈ R;

Baeten, van Beek, van Hulst, Markovski 41

3. if q b−→q′ for some b ∈ B, then there exists p′ ∈ T such that p b−→ p′ and (p′,q′) ∈ R.

If (p,q) ∈ R, we say that p is partially bisimilar to q with respect to B and we write p≤B q. If q≤B p
holds as well, we write p↔B q.

Note that ≤B is a preorder relation, making↔B an equivalence relation for all B⊆ A [2]. If B = /0, then
≤ /0 coincides with strong similarity preorder and↔ /0 coincides with strong similarity equivalence [12, 1].
When B =A,↔A turns into strong bisimilarity [12, 1]. Moreover, if p≤B q, then p≤C q for every C⊆ B.
We also note that partial bisimilarity is a precongruence with respect to the operators of TCP∗ [2].

For given processes p,r ∈ T, representing the plant and the control requirements, respectively, we
ensure that s ∈ T is a valid supervisor that does not disable uncontrollable events by requiring that
p/s≤ /0 r and p/s≤AU

p, where AU ⊆ A is the set of uncontrollable events [2]. This setting covers both
the existing deterministic and nondeterministic definition of controllability for discrete-event systems [2].
From the definition, it is also not difficult to observe, that one obtains the same supervised behavior for
every p′↔AU

p. Thus, one direct benefit from our approach is a procedure for coarsest plant minimization
that respects controllability, based on the partial bisimilarity equivalence.

Next, we model the supervisory control loop with event-based observations and we illustrate our
approach by a use case involving coordination of an automated guided vehicle in a production line.

3 Control Loop with Event-Based Observations

We employ the process theory TCP∗ to formalize the behavior of the control loop with event-based ob-
servations, depicted in Figure 1b). According to the scheme, the plant cannot execute a controllable
event without the permission of the supervisor, whereas the supervisor must not disable uncontrollable
events. Nonetheless, the supervisor is able to observe execution of uncontrollable events in the plant,
so that it can correctly determine the state of the plant and transmit correct control signals. Moreover,
the supervisor should not execute uncontrollable events independently, as this does not contribute to his
objective. In addition, the supervisor should not introduce deadlocks or livelocks explicitly, unless dead-
lock or livelock behavior is inherent to the plant. Finally, we assume that the supervisor is a (global)
monolithic process, i.e., it is not comprised from multiple modular or distributed synchronizing supervi-
sors [9]. Taking into account the above observations, we can specify the syntax of the plant processes P
and the supervisor processes S as given by P and S, respectively:

P ::= 0 | 1 | c?d.P | u!`?kd.P | P ·P | P+P | P ‖ P | ∂E(P) | P∗

S ::= 1 | c!d.S | u?d.S | S+S | S∗,

where c ∈ C, u ∈ U, `,k ∈ {0,1}, d ∈ D, and E ⊆ { f !m?n | f ∈ H, m,n ∈ N}. To implement broadcast
communication in the case when the supervisor sends control signals to several distributed components,
which do not have to receive the control signals simultaneously, one would also need to introduce action
priorities, cf. [4]. Due to page restrictions, we will not employ broadcast in the general form in this paper
and, instead, we enforce three-way communication by employing only the encapsulation operator.

Supervisory coordination of an automated production line To illustrate our approach to supervi-
sory control and the model of the control loop, we discuss a simple example concerning coordination of
an automated guided vehicle (AGV) in an automated production line, depicted in Figure 2. The AGV
is responsible for transferring the preproduct made by Workstation M to Workstation N and transfer-
ring the finished product from Workstation N to the Delivery station. The workstations and the AGV

42 A Process Algebra for Supervisory Coordination

AGV

Workstation M Workstation N Delivery

Supervisor

s

m n d

control signals observable product transfer signals

Plant

Figure 2: Automated production line

are coordinated by a supervisor, which sends the corresponding control signals. We can model the au-
tomated production system depicted in Figure 2 employing TCP∗, where M, N, A, and S are process
terms that model Workstation M, Workstation N, AGV, and the supervisor. We note that we abstract
from the delivery station, depicted by a single event deliver, as it does not contribute to any inter-
esting behavior. We retain the communication channel names as depicted in Figure 2, whereas the
data elements are D = {make,move2N,preproduct,product}. The uncontrollable channel names are
U= {m,n,produce,process,move,deliver}, whereas C= {s} is the set of controllable channel names.

M , (s?make.produce(preproduct).m!preproduct.1)∗

N , (n?preproduct.process(preproduct).n!product.1)∗

A, (m?preproduct.s?move2N.move(preproduct).n!preproduct.1+n?product.deliver(product).1)∗

S, (s!make.s!move2N.1)∗.

Workstation M repeatedly waits for a command from the supervisor to make a preproduct, which is
offered to the AGV once it is made. Workstation N waits for a preproduct from the AGV, which is there-
after processed and offered back to the AGV. The AGV can either pick up a preproduct at Workstation
M, after which it asks for permission to move the preproduct to Workstation N, or pick up a finished
product at Workstation N and deliver it. Now, the unsupervised plant is given by the process

U , ∂F(M ‖ N ‖ A), where F = {m?,m!,n?,n!}.

At this point, we note that we enforce meaningful communication of uncontrollable channels within the
plant by encapsulation and this does not restrict the behavior of the unsupervised plant, but only ensures
its meaningful behavior. Following the framework outlined above, it can be readily observed that the
plant U ∈ P follows the outlined syntax.

In this first modeling instance, we assume that the AGV is responsible for delivering the final product
and we propose a supervisor as given by the process S. Note that the supervisor S∈ S follows the outlined
syntax and it does not make use of any observed information. Supervisor S repeatedly gives orders to
Workstation M for new products to be made, followed by orders to the AGV to transfer the preproduct
to Workstation N. Thus, the automated production system is modeled as

U/S, ∂E(S ‖U), where E = {s?,s!},

Baeten, van Beek, van Hulst, Markovski 43

ξ (0) = 0 ξ (1) = 1 ξ (p∗) = ξ (p)∗ ξ (p�q) = ξ (p)�ξ (q) for � ∈ {+, ·,‖}
ξ (c!m?nd.p) = ξ (c!m?nd).ξ (p) for c ∈ H, d ∈ D, m,n ∈ N

Table 2: Renaming function

which enforces communication of control signals and transfer of (pre)products. One can directly check
that S is a valid supervisor by establishing that the supervised plant is partially bisimulated by the original
plant with respect to the uncontrollable events. To this end, we must employ renaming of events, as
the original plant has open communication actions that wait for synchronization with the supervisor.
This renaming function ξ traverses the process terms and renames all open communication actions to
succeeded communication actions. We note that we overload the name of the renaming function of
the process terms and apply it to the communication action names as well. Also, we only specify the
communication actions that are actually renamed. The definition of the renaming operation is given by
structural induction in Table 2.

Now, in order to verify that the supervisor does not disable uncontrollable events, it is sufficient to
verify that it holds that

U/S≤AU
ξ (U), where ξ : s?d 7→ s!?d for d ∈ D,

which can be directly checked. We note that there was no restriction imposed on the control requirements,
which in this case coincide with the plant and are, therefore, trivially satisfied.

Nonblocking supervision Unfortunately, our automated production system has a deadlock. The main
reason for the deadlock is that a second preproduct can come too early, before the first product is com-
pletely finished and delivered, which is set off by sending a s!make command too early, i.e., before the
processed product has left Workstation N. Then, the AGV picks up the preproduct from Workstation M,
but it cannot deliver it to Workstation N, as the latter also waits for a finished product to be picked. A
trace that leads to deadlock is

s!?make produce(preproduct) m!?preproduct s!?move2N n!?preproduct
s!?make produce(preproduct) m!?preproduct s!?move2N process(preproduct) 0.

Such form of blocking behavior appears often, so in many cases the supervisor is additionally required to
prevent deadlock and/or livelock, or also known as blocking, behavior [22, 9]. To this end, special marked
states are introduced to automata in supervisory control. We note that these states roughly correspond
to successful termination in our setting. The correspondence is not strict, mainly due to the absence of
sequential composition and the Kleene star operator in the supervisory control literature and the role
of the successful termination in these contexts, confer Table 1. Note that the marked states do not
contribute to the formation of the recognized language of an automaton, which is different from its
marked language [22, 9].

So, besides the control requirements, we impose an additional deadlock-freedom requirement on the

supervisor, stated formally as: there exists no trace t ∈ A∗ such that U/S
t
�0. To ensure this additional

nonblocking requirement, we have to modify the supervisor to accept requests for making a new preprod-
uct only after the finished product has been loaded on the AGV, to be transferred to the delivery station.

44 A Process Algebra for Supervisory Coordination

To this end, the supervisor should allow for a new product to be made only after the finished prod-
uct has been loaded to the AGV at Workstation N, which can be achieved by observing this additional
information on channel n.

To this end, we modify the supervisor to S′ as follows:

S′ , (s!make.s!move2N.n?product.1)∗.

At this point, we note that communication on the channel n now must occur between three parties, i.e.,
Workstation N that sends information and the AGV and the supervisor that receive it. In order to enforce
this communication, we employ the generic communication actions, i.e., we encapsulate all (incomplete)
communication actions on n, except for n!1?2product. The definition of the deadlock-free supervised
plant now becomes:

U/S′ , ∂E ′(S′ ‖U), where E ′ = {s?,s!,n?,n!?}.

Again, one directly verifies that the supervisor is valid by establishing partial bisimilarity between the
supervised and the original plant following an appropriate renaming of the incomplete communication
actions, given by ξ : s?d 7→ s!?d, n!?d 7→ n!1?2d for d ∈ D.

Next, we extend the process theory TCP∗ to accommodate state-based observations as well.

4 Control Loop with State-Based Observations

We propose TCP∗⊥, an extension of TCP∗, with propositional signals [5] and guarded commands in order
to support the modeling of a control loop with state-based observations. To this end, we employ the
Boolean algebra

B= (N,F,T,¬,∧,∨,⇒),

where N= {P1, . . . ,Pn} are the propositional symbols, the constants represent false and true, whereas the
operators denote negation, conjunction, disjunction, and implication, respectively. We use B to denote the
standard Boolean expressions of B, which are evaluated with respect to a given valuation v : B→{F,T}.
The set of valuations is denoted by V.

Process theory TCP∗⊥ We enrich the syntax of TCP∗ and the set of process terms T with the inac-
cessible process constant, guarded commands, and signal emission. The inaccessible process, notation
⊥, specifies the process in which there are inconsistencies between the valuation of the propositional
variables and the emitted propositional signals. Such a state cannot be reached from any consistent
state. The guarded command, notation φ :→ p, specifies a guard φ ∈ B that guards a process p ∈ T.
If the guard is successfully evaluated, the process continues behaving as p ∈ T or, else, it deadlocks.
The root signal emission process φ ∧Np, emits the propositional signal φ ∈ B until the process p ∈ T
takes an outgoing transition, provided that the propositional signal is consistent with the valuation. To
be able to evaluate the propositional expressions, we couple the process terms with valuations, notation
〈p,v〉 ∈ T×V. The dynamics of the valuations, with respect to outgoing labeled transitions, is captured
by a predefined valuation effect function, given by effect : A×V→ 2V. With respect to the valuation
we have to extend the successful termination predicate to ↓ ∈ T×V and the labeled transition relation
to −→ ∈ T×V×A×T×V. We introduce an additional consistency predicate↘ ∈ T×V that checks

Baeten, van Beek, van Hulst, Markovski 45

18
〈0,v〉 ↘

19
〈1,v〉 ↘

20
〈1,v〉 ↓

21
〈a.p,v〉 ↘

22
〈p,v′〉 ↘ , v′ ∈ effect(a,v)

〈a.p,v〉 a−→〈p,v′〉

23
〈p,v〉 a−→〈p′,v′〉, 〈q,v〉 ↘
〈p+q,v〉 a−→〈p′,v′〉

24
〈p,v〉 ↘ , 〈q,v〉 a−→〈q′,v′〉
〈p+q,v〉 a−→〈q′,v′〉

25
〈p,v〉 ↘ , 〈q,v〉 ↓
〈p+q,v〉 ↓

26
〈p,v〉 ↓, 〈q,v〉 ↘
〈p+q,v〉 ↓

27
〈p,v〉 ↘ , 〈q,v〉 ↘
〈p+q,v〉 ↘

28
〈p,v〉 ↓, 〈q,v〉 ↓
〈p ·q,v〉 ↓

29
〈p,v〉 ↓, 〈q,v〉 a−→〈q′,v′〉
〈p ·q,v〉 a−→〈q′,v′〉

30
〈p,v〉 a−→〈p′,v′〉, 〈p′ ·q,v′〉 ↘
〈p ·q,v〉 a−→〈p′ ·q,v′〉

31
〈p,v〉 ↓, 〈q,v〉 ↘
〈p ·q,v〉 ↘

32
〈p,v〉 ↘ , 〈p,v〉 6 ↓
〈p ·q,v〉 ↘

33
〈p,v〉 ↘
〈p∗,v〉 ↓

34
〈p,v〉 ↘
〈p∗,v〉 ↘

35
〈p,v〉 a−→〈p′,v′〉
〈p∗,v〉 a−→〈p′ · p∗,v′〉

36
〈p,v〉 ↓, 〈q,v〉 ↓
〈p ‖ q,v〉 ↓

37
〈p,v〉 ↘ , 〈q,v〉 ↘
〈p ‖ q,v〉 ↘

38
〈p,v〉 a−→〈p′,v′〉, 〈q,v〉 ↘ , 〈q,v′〉 ↘

〈p ‖ q,v〉 a−→〈p′ ‖ q,v′〉
39
〈p,v〉 ↘ , 〈p,v′〉 ↘ , 〈q,v〉 a−→〈q′,v′〉

〈p ‖ q,v〉 a−→〈p ‖ q′,v′〉

40
〈p,v〉 c!`?kd−→ 〈p′,v′〉, 〈q,v〉 c!m?nd−→ 〈q′,v′′〉, 〈p′ ‖ q′,v′′′〉 ↘ , v′′′ ∈ effect(c!`+m?k+nd,v), `+ k > 0, m+n > 0

〈p ‖ q,v〉
c!`+m?k+nd
−→ 〈p′ ‖ q′,v′′′〉

41
p ↓

∂E(p) ↓
42

p↘
∂E(p)↘

43
p a−→ p′ a 6∈ {c!m?nd | c!m?n ∈ E, d ∈ D}

∂E(p) a−→∂E(p′)

44
〈p,v〉 ↓, v(φ) = T
〈φ :→ p,v〉 ↓

45
〈p,v〉 ↘ , v(φ) = T
〈φ :→ p,v〉 ↘

46
v(φ) = F

〈φ :→ p,v〉 ↘
47
〈p,v〉 a−→〈p′,v′〉, v(φ) = T

〈φ :→ p,v〉 a−→〈p′,v′〉

48
〈p,v〉 ↓, v(φ) = T
〈φ ∧Np,v〉 ↓

49
〈p,v〉 ↘ , v(φ) = T
〈φ ∧Np,v〉 ↘

50
〈p,v〉 a−→〈p′,v′〉, v(φ) = T

〈φ ∧Np,v〉 a−→〈p′,v′〉

Table 3: Operational rules for TCP∗⊥

whether the state is consistent. The operational rules in Table 3 give the semantics of the new predi-
cate and the transition relation with respect to the new operators. We note that the operational rules of
Table 1 have to be enhanced by decorating the process terms with valuations and additional checks for
consistency.

The rules ensure that when taking an action transition, the target state is always consistent. We
comment the important rules that are not directly taken from Table 1 and adapted in a setting with
valuations. The deadlock, successful termination, and action prefix are always consistent as stated by
rules 18, 19, and 21, respectively. The target process must be consistent for the target valuation, which is
determined by the effect function as given by rule 22. Rules 23-27 introduce valuations and consistency
for the alternative composition, whereas rules 28-32 do the same for the sequential composition and rules
33-35 describe iteration. Rules 38 and 39 introduce interleaving in the new setting. Rule 40 shows how
the effect function is impacted by synchronization. For the effect function to be well-defined with respect
to the valuations by interleaving and synchronization [1], we require additionally that

effect(c!`+m?k+nd,v)⊆ effect(c!m?nd,effect(c!`?kd,v))∩ effect(c!`?kd,effect(c!m?nd,v))

for all `,k,m,n ∈ N with `+ k > 0 and m+ n > 0. Rules 41-43 introduce the encapsulation operator in
the new setting. Rules 44 and 47 show that a guarded process does not deadlock only when the guard
evaluates to true. We note, however, that the value of the guard does not affect the consistency of the term,

46 A Process Algebra for Supervisory Coordination

provided that the term that is guarded is consistent. This is in direct contrast with signal emission, see
rule 49, where the consistency is preserved only if the emitting signal is consistent within the valuation.
In that case, the process that emits the signal can continue with its normal execution.

Finally, we also have to adapt our behavioral relation in order to correctly handle the valuations.
Here, we directly employ the approach of [5, 1], where this extension is shown for bisimulation. We
consider a relation R⊆T×T to be a partial bisimulation with respect to a bisimulation action set B⊆ A,
if for all (p,q) ∈ R it holds that:

1. if 〈p,v〉 ↓ for some v ∈ V, then 〈q,v〉 ↓;
2. if 〈p,v〉 a−→〈p′,v′〉 for some v ∈ V and a ∈ A, then there exists q′ ∈ T such that 〈q,v〉 a−→〈q′,v′〉

and (p′,q′) ∈ R;

3. if 〈q,v〉 b−→〈q′,v′〉 for some v ∈ V and b ∈ B, then there exists p ∈ T such that 〈p,v〉 b−→〈p′,v′〉
and (p′,q′) ∈ R.

Again, if (p,q) ∈ R, we say that p is partially bisimilar to q with respect to B and we write p≤B q. If
q≤B p holds as well, we write p↔B q. Also, we consider a process s ∈ T to be a supervisor of the plant
p ∈ T with respect to the control requirements r ∈ T if p/s≤ /0 r and p/s≤AU

p.

Plant and supervisor syntax Now, we can model the control loop with state-based observations as
depicted in Figure 1c). Intuitively, the plant emits a signal that identifies the observable states. Upon ob-
serving such a signal, the supervisor checks which controllable actions are allowed in the state identified
by the signal. Allowance of actions is specified in the form of guarded prefixes in which a process term is
bound to a propositional formula deduced from the control requirements. These new concepts introduce
further asymmetry in the control loop, where the syntax of the plant and the supervisor is again given by
P and S, respectively:

P ::= 0 | 1 | c?d.P | u!`?kd.P | P ·P | P+P | P ‖ P | ∂E(P) | φ :→ P | φ ∧NP | P∗

S ::= 1 | c!d.S | S+S | φ :→ S | S∗,

for c ∈ C, u ∈ U, `,k ∈ {0,1}, d ∈ D, φ ∈ B, and E ⊆ { f !m?n | f ∈ H, m,n ∈ N}.
We note that in the state-based setting, the control requirements can be stated directly in terms of

states, i.e., signals that the state is emitting, and additionally, one can specify which events are allowed
with respect to the emitted signals. The control requirements R have the following syntax given by R:

R ::= φ | f !m?nd−→ ⇒ φ | φ ⇒ f !m?nd
X−→ ,

for f ∈ H, d ∈ D, m,n ∈ N, and φ ∈ B. Given control requirements r ∈ R are satisfied with respect to
process p ∈ T in the valuation v ∈ V, notation 〈p,v〉 |= r, according to the following operational rules:

51
v(φ) = T
〈p,v〉 |= φ

52
〈p,v〉 |= ¬φ ⇒ f !m?nd

X−→

〈p,v〉 |= f !m?nd−→ ⇒ φ

53
v(φ) = T, 〈p,v〉 f !m?nd

X−→

〈p,v〉 |= φ ⇒ f !m?nd
X−→

,

where 〈p,v〉 aX−→ for a ∈ A holds if there does not exist 〈p′,v′〉 such that 〈p,v〉 a−→〈p′,v′〉 with v′ =
effect(a,v). We note that the second form of the control requirements is introduced since it corresponds
better to modeling intuition and it is equivalent to the third, which is easily seen from the operational
rule 52. Furthermore, for the propositional symbols, we employ the notation in(StateName), where
in(StateName) is a signal emitted from the process, corresponding to a state in the labeled graph rep-
resentation identified by StateName. For example, in the Current Power Mode process in Figure 5, the
process modeling the state with associated name Standby emits the signal in(Standby).

Baeten, van Beek, van Hulst, Markovski 47

A
B

Paper sheet Toner
image

Imaging
drum

Fuse
pinches

Toner transfuse belt

Groove
cleaner

Supply
toner roll

Image
toner roll

Paper path

b)

job printing job printing

job printing job printingA B

c)

Run Standby Transitioning Run ↔ Standby

Prolonged user waiting time

Intended user waiting time

Power mode:

a)

Figure 3: a) Printing process, b) maintenance operation, c) emergent behavior

5 Coordination Control of Maintenance Procedures

We employ the process theory TCP∗⊥ to model the coordination of maintenance procedures of a printing
process of a high-end Océ printer [18]. The printing process consists of several distributed independent
components as depicted in Figure 3a). The process applies the toner image onto the toner transfuse belt
and fuses it onto the paper sheet. To maintain high printing quality, several maintenance operations have
to be carried out, like: toner transfuse belt jittering, which displaces the transfuse belt to prolong its lifes-
pan due to wearing by paper edges; black image operation, which removes paper dust by occasionally
printing completely black pages; coarse toner particles removal operation; etc. Most maintenance oper-
ations are scheduled after a given number of prints, but must be carried out after a given strict threshold.
To perform a maintenance operation, the printing process has to change its power mode, from Run mode,
used for printing, to Standby mode, required for maintenance. However, this change can actually trigger
pending maintenance operations, which may unnecessary prolong the user waiting time.

As an illustration, in Figure 3b) we depict the situation, where due to inevitable execution of main-
tenance operation A, the ongoing print job is suspended and the power mode of the printer is changed
to Standby. However, an unwanted situation occurs, i.e., the power mode change triggers a longer, yet
postponable maintenance operation B as depicted in Figure 3c). For instance, a black image operation
(A) must be performed, which takes the time needed to print one page and is activated often, but the
switching of the power mode triggers the much longer toner transfuse belt jittering (B), thus making the
user wait unnecessarily.

The goal of the research performed for this use case was to eliminate undesired emergent behavior
due to interactions of otherwise correctly-functioning distributed components, with primary focus at
coordinating maintenance operations. Our approach was to synthesize a supervisory coordinator for the
maintenance procedures [18], which here we model in the proposed process theory.

Informal description of the printing process An abstract view of the control architecture of a high-
end printer is depicted in Figure 4. Print jobs are sent to the printer by means of the user interface. The
printer controller communicates with the user and assigns print jobs to the embedded software, which
actuates the hardware to realize print jobs. The embedded software is organized in a distributed way,
per functional aspect, such as, paper path, printing process, etc. Several managers communicate with the
printer controller and each other to assign tasks to functions, which take care of the functional aspects.

We depict a printing process function comprising one maintenance operation in Figure 4. We abstract
from all timing behavior, which can be present in some control signals, e.g., execute a maintenance
procedure after a given delay. Each function is hierarchically organized as follows: (1) controllers:
Target Power Mode and Maintenance Scheduling, which receive control and scheduling tasks from the

48 A Process Algebra for Supervisory Coordination

Printer
Controller

Embedded
Software

Hardware

User
Interface

...
Managers

Functions

...
Maintenance

Operation Page Counter
Current Power

Mode

 Devices

Status Procedure / Coordinator

Target Power Mode

Printing Process Function

_ToSoftDln
_ToHardDln

_TargetStb
_TargetRun

Maintenance Scheduling

Run2Stb
Stb2Run _InRun

_InStb

OperStart

_OperFinished

_ExecOperNow SchedOper

Figure 4: Printing process function.

managers; (2) procedures: Status Procedure, Current Power Mode, Maintenance Operation, and Page
Counter, which handle specific tasks and actuate devices, and (3) devices as hardware interface.

The Status Procedure is responsible for coordinating the other procedures given the input from the
controllers. It will be implemented as a supervisory coordinator with respect to the coordination rules
given below. The Current Power Mode procedure sets the power mode to Run or Standby depending
on the enabling signals from the Status Procedure Stb2Run and Run2Stb, respectively. The confirma-
tion is sent back via the signals InRun and InStb, respectively. Maintenance Operation either carries
out maintenance operation or it is idle. The triggering signal is OperStart and the confirmation is sent
back by OperFinished. The Page Counter procedure counts the printed pages since the last mainte-
nance and sends signals when soft and hard deadlines are reached using ToSoftDln and ToHardDln,
respectively. The counter is reset each time the maintenance is finished, by receiving the confirmation
signal OperFinished from Maintenance Operation. The controller Target Power Mode defines which
mode is requested by the manager by sending the control signals TargetStb and TargetRun to the Status
Procedure. Maintenance Scheduling receives a request for maintenance from Status Procedure via the
signal SchedOper, which it forwards to a manager. The manager confirms the scheduling with the other
functions and sends a response back to the Status Procedure via the control signal ExecOperNow. It
also receives feedback from Maintenance Operation that the maintenance is finished in order to reset the
scheduling.

Plant modeling in TCP∗⊥ We model the procedures by means of processes. We retain the names
of the control signals, turning them into communication actions where appropriate. The controllable
communicating channels are the given by C = {Run2Stb,Stb2Run,SchedOper,OperStart}, modeled as
receive actions in the plant. We note that we abstract from data elements as communication should
only enforce ordering of events. The other actions are uncontrollable, also prefixed by , where only
OperFinished is modeled as a communication action, as the procedure Maintenance operation must

send signals and reset Page Counter and Maintenance Scheduling. The signals emitted from the plant
uniquely identify the state of the plant. For clarity, we also depict the processes in Figure 5, where the
signal names are given next to the states that emit them. Page Counter is modeled by the process C,
where OperFinished is modeled as a receive action, to be synchronized with Maintenance Operation:

Baeten, van Beek, van Hulst, Markovski 49

_OperFinished!

OperStart?

Stb2Run?

Run2Stb?

_InStb

_InRun

_OperFinished?

_ToSoftDln
_OperFinished?

_ToHardDln

SchedOper?

_ExecOperNow_OperFinished?

_TargetStandby

_TargetRun

_OperFinished?

Page Counter

Target Power ModeMaintenance Operation

Current Power Mode

Maintenance Scheduling

Standby

Starting Stopping

Run

NoDeadline SoftDeadline HardDeadline

OperIdle

OperInProg

Target
Standby

Target
Run NotScheduled Scheduled

ExecuteNow

Figure 5: Plant modeling of the Printing Process Function.

C ,
(

in(NoDeadline)∧N(
OperFinished?.1+
ToSoftDln.

(
in(SoftDeadline)∧N(

OperFinished?.1+ ToHardDln.in(HardDeadline)∧N OperFinished?.1))
))∗

.

Maintenance Operation is specified by the process O, where OperFinished broadcasts that the main-
tenance operation has finished:

O ,
(
in(OperIdle)∧NOperStart?.in(OperInProg)∧N OperFinished!.1

)∗
.

Target Power Mode is modeled by T :

T ,
(
in(TargetStandby)∧N TargetRun.in(TargetRun)∧N TargetStandby.1

)∗
,

whereas Current Power Mode is given by P:

P ,
(
in(Standby)∧NStb2Run?.in(Starting)∧N InRun.
in(Run)∧NRun2Stb?.in(Stopping)∧N InStb.1

)∗
.

Finally, Maintenance Scheduling is specified as M:

M ,
(
in(NotScheduled)∧NSchedOper?.in(Scheduled)∧N ExecOperNow.
in(ExecuteNow)∧N OperFinished?.1

)∗
.

Due to the generic valuation effect function, we need to impose additional restriction on the emitted sig-
nals. More precisely, we wish that the signals emitted in a process are not ambiguous, e.g., it cannot be
that both in(Standby) and in(Run) are valid at the same time as these are two distinct states that belong
to the same process. Note, however, that this situation is possible as one can easily construct a valuation

50 A Process Algebra for Supervisory Coordination

effect function that always assigns the same values to the above propositional symbols. However, such
misconstrued valuations can actually lead to wrong supervised behavior as the supervisor bases its de-
cision on the emitted signals, which are deduced from the valuations. At this point, we have two viable
options. One is to make the signal emission complete and rewrite all signal emissions such that the effect
function leads to inconsistencies unless it uniquely defines each state. For example, then we would have
to rewrite T to T ′:

T ′ ,
(
(in(TargetStandby)∧¬in(TargetRun))∧N TargetRun.
(¬in(TargetStandby)∧ in(TargetRun))∧N TargetStandby.1

)∗
,

and adapt the rest of the processes analogously. The other option is to set an invariant process in parallel
to the components that will ensure that only one state can be identified per process. To this end, we
define the operation

⊕
P∈S P,

∨
P∈S

(
P∧

∧
Q∈S\{P}¬Q

)
for a set of propositional symbols S⊆N, which

ensures that only one propositional symbol, i.e., one signal, is exclusively emitted per state. Now, the
invariant process I that enforces this restriction can be specified as:

I ,
((∧5

i=1
⊕

P∈{Si}P
)
∧N0
)∗

,

where Si ⊂ N for i ∈ {1, . . . ,5} contain the signals emitted by the processes C, O, T , P, and M, respec-
tively, i.e.,

S1 = {in(NoDeadline), in(SoftDeadline), in(HardDeadline)},
S2 = {in(OperIdle), in(OperInProg)},
S3 = {in(TargetStandby), in(TargetRun)},
S4 = {in(Standby), in(Starting), in(Stopping), in(Run)},
S5 = {in(NotScheduled), in(Scheduled), in(ExecuteNow)}.

Finally, the unsupervised plant can be specified as U ∈ P given by:

U , ∂F(C ‖ O ‖ T ‖ P ‖M) ‖ I,

where F = { OperFinished?, OperFinished!, OperFinished!0?2, OperFinished!?} enforces a three-
way communication between C, O, and M. We note that due to the stringent streamlining invariant, the
role of the valuation effect function is now diminished and one can simply assume that effect(a,v) = V
for every a ∈ A and v ∈ V.

Coordination requirements We synthesized a coordinator that implements Status Procedure, see Fig-
ure 4, which coordinates the maintenance procedures with the rest of the printing process. The following
coordination requests describe the behavior of the Status Procedure:

1. Maintenance operations can be performed only when the printing process is in standby;

2. Maintenance operations can be scheduled only if soft deadline has been reached and there are no
print jobs in progress or a hard deadline is passed;

3. Maintenance operations can be started only after being scheduled;

4. The power mode of the printing process must follow the power mode dictated by the managers,
unless overridden by a pending maintenance operation.

Baeten, van Beek, van Hulst, Markovski 51

We formalize these control requirements as follows:

1. The maintenance procedure is performed if the process emits the signal in(OperInProg), while
emitting the signal in(Standby) as well:

R1 , in(OperInProg)⇒ in(Standby).

2. For the control signal SchedOper! to be sent to Maintenance Scheduling, either one of the fol-
lowing must hold: (1) A soft deadline has been passed, identified by emission of the signal
in(SoftDeadline), and there are no print jobs waiting, meaning that the target power mode is not
in run, identified by the signal in(TargetRun); or (2) A hard deadline has been passed, indicated
by the signal in(HardDeadline). This is captured by the following control requirement:

R2 ,
SchedOper!−→ ⇒ (in(SoftDeadline)∧¬in(TargetRun))∨ in(HardDeadline).

3. The maintenance operation can be started by sending the control signal OperStart! only if it has
been scheduled, prompted by the emission of the signal in(ExecuteNow):

R3 ,
OperStart!−→ ⇒ in(ExecuteNow).

4. If we want to switch from standby to run power mode, indicated by sending the control signal
Stb2Run!, then this has been requested by the target power mode manager by emitting the signal
in(TargetRun), provided that there are no maintenance operations scheduled, for which the signal
in(ExecuteNow) should be checked:

R4,1 ,
Stb2Run−→ ⇒ in(TargetRun)∧¬in(ExecuteNow).

When switching from run to standby power mode, indicated by sending the control signal Run2Stb!,
the target power mode should be in standby, given by emission of the signal in(TargetStandby).
An exception is made when a maintenance operation is scheduled to be executed, given by emis-
sion of the signal in(ExecuteNow):

R4,2 ,
Run2Stb−→ ⇒ in(TargetStandby)∨ in(ExecuteNow).

Supervisor synthesis With respect to the control requirements we synthesized a deadlock- and livelock-
free maximally-permissive supervisor [18]. The supervisor sends the control signals upon observation of
certain signal combinations, which are given in the form of guards. The indices of the guards correspond
to the indices of the control requirements that concern the control signal:

g2 , (in(SoftDeadline)∧ in(TargetStandby))∨ in(HardDeadline)
g3 , in(Standby)∧ in(ExecuteNow)

g4,1 , ¬in(ExecuteNow)∧ in(TargetRun)∧¬in(OperInProg)
g4,2 , (¬in(ExecuteNow)∧ in(TargetStandby))∨ in(ExecuteNow).

The supervisor is given by S ∈ S:

S,
(

g2 :→ SchedOper!.1+g3 :→ OperStart!.1+g4,1 :→ Stb2Run!.1+g4,2 :→ Run2Stb!.1
)∗

.

52 A Process Algebra for Supervisory Coordination

g41 :→Run2Stb!

g2 :→SchedOper!

g42 :→Stb2Run!g41 :→Run2Stb!

g2 :→SchedOper!

g42 :→Stb2Run!

g3 :→OperStart!

Figure 6: Alternative form of the supervisor

Now, the supervised plant U/S is given by:

U/S, ∂E(S ‖U), where E = {c!,c? | c ∈ C}.

Again, we can show that the supervised plant is partially bisimilar to the original plant with respect to
the uncontrollable events by showing that

U/S≤AU
ξ (U), where ξ : c? 7→ c!? for c ∈ C.

The above form of the supervisor does not provide much information regarding the choices made.
It can be visualized as a single state transition system with four outgoing guarded transitions. However,
it is not difficult to deduce that initially the event Run2Stb is not possible since the initial signal is
in(Standby). Also, StartOper is initially unavailable as the signal in(ExecuteNow) is not emitted.
In order to better understand the consequences of the control choices made by the supervisor and the
thereafter enabled controllable events, we depict an alternative supervisor in Figure 6. We note that
both variants of the supervisor produce equivalent supervised behavior (the guards remain the same),
the difference being that the supervisor depicted in Figure 6 reveals the consequences of choosing a
particular controllable action. We can now observe, that if the operation is scheduled while the printing
process is in standby power mode, then it can be directly executed, returning the supervisor to the initial
state. However, if the power mode is run, then the maintenance operation can still be scheduled, but the
system has to switch to standby power mode before it can be executed.

6 Conclusions and Future Work

We modeled two prominent types of supervisory control loops, one employing event-based observations
and the other employing state-based observations. To this end, we revisited the process theory TCP∗

of [1], where we introduced generic communication actions to model communication between multiple
parties, and we applied the developed theory to model the control loop with event-based observations.
We classified the processes modeling the unsupervised system and the controller to capture their specific
goals. We illustrated our approach on an academic example of coordinating an automated guided vehicle
in a production line. To model the control loop with state-based observations as well, we extended the
process theory with guarded commands and root signal emission, leading to TCP∗⊥. We reiterated on an
industrial study dealing with coordination of maintenance procedures in a printing process of a high-tech
printer. We demonstrated that our approach is capable of modeling the interaction in the control loop
precisely by distinguishing between the information flows of the observations and the control signals.

Baeten, van Beek, van Hulst, Markovski 53

Application of process theory in supervisory coordination The work presented in this paper is
merely the third step in our investigations regarding application of process theory in supervisory control
and coordination. Our prior work identified and employed partial bisimulation as a suitable behavioral
relation to capture the central notion of controllability [2]. Based on this relation we developed an effi-
cient minimization procedure for nondeterministic plants that respects controllability. Here, we modeled
the most prominent variants of the supervisory control loop and further calibrating the process algebra
with respect to the notions that are needed to correctly capture the central notions of supervisory control
theory.

The issues are far from resolved. We intend to proceed in several directions of research, where we
expect that a process-theoretic approach can advance the theory and/or define the notion more clearly and
concisely. One issue that we partially treat in this paper is the notion of partial observability, which is an
inherent property of plants in which due to unavailability of sensors certain information is unobservable
to the supervisor [9]. There is a lot of work regarding partial observability of events, which can be treated
as uncontrollable actions that are not communicated to the supervisor or as silent steps from which the
supervisor has to abstract. The first option is already present in the current setting, whereas the second
approach is more than familiar in the process-theoretic community. An unavoidable complication in
supervisory control is that the supervisor must not make a wrong control choice, irrespective of not
being able to observe the correct state of the plant, making partial observability a global property [2].
In the setting with state-based observations, one can easily abstract from state information by emitting
slightly ambiguous signals, e.g., instead of uniquely identifying as being in states S or T, one can emit
the signal in(S)∨ in(T). We intend to further investigate the mechanics of state abstraction in supervisory
control.

As expected, there are quantitative extensions of supervisory control theory employing real and
stochastic timing, probabilities, and data. However, the supervisory control community seems to strug-
gle with clear and acceptable definitions of controllability, as typically these follow the original approach
of [22] and are, thus, given in trace semantics. There are other approaches that are instead based on
games, but these often suffer from great computational complexities. We believe that here the commu-
nity of process theory and verification can contribute a great deal, both in providing suitable definitions
and algorithms for minimization and supervisor synthesis. Finally, the supervisor synthesis algorithms
almost always have distributed, decentralized, modular, or hierarchical implementations. Concurrency is
inherent to our work, and we believe that there are a lot of interesting problems, issues, and challenges
that are hidden in this exciting field.

References

[1] J. C. M. Baeten, T. Basten & M. A. Reniers (2010): Process Algebra: Equational Theories of Communicating
Processes. Cambridge Tracts in Theoretical Computer Science 50, Cambridge University Press.

[2] J. C. M. Baeten, D. A. van Beek, B. Luttik, J. Markovski & J. E. Rooda (2011): A Process-Theoretic
Approach to Supervisory Control Theory. In: Proceedings of ACC 2011, IEEE. Available from:
http://se.wtb.tue.nl.

[3] J. C. M. Baeten, B. Luttik, T. Muller & P. van Tilburg (2010): Expressiveness modulo Bisimilarity of Regular
Expressions with Parallel Composition (extended abstract). In: Proceedings of EXPRESS 2010, Electronic
Proceedings of Theoretical Computer Science 41, pp. 1–15, doi:10.4204/EPTCS.41.1.

[4] J. C. M. Baeten & W. P. Weijland (1990): Process algebra. Cambridge Tracts in Theoretical Computer
Science 18, Cambridge University Press, doi:10.1017/CBO9780511624193.

http://dx.doi.org/10.4204/EPTCS.41.1
http://dx.doi.org/10.1017/CBO9780511624193

54 A Process Algebra for Supervisory Coordination

[5] J.C.M. Baeten & J.A. Bergstra (1997): Process algebra with propositional signals. Theoretical Computer
Science 177, pp. 381–405, doi:10.1016/S0304-3975(96)00253-8.

[6] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi & G. F. Franklin (1993): Supervisory control of a rapid
thermal multiprocessor. IEEE Transactions on Automatic Control 38(7), pp. 1040 –1059.

[7] G. Barrett & S. Lafortune (1998): Bisimulation, the Supervisory Control Problem and Strong
Model Matching for Finite State Machines. Discrete Event Dynamic Systems 8(4), pp. 377–429,
doi:10.1023/A:1008301317459.

[8] H. Beohar & P.J.L. Cuijpers (2010): A theory of desynchronisable closed loops system. In: Proceedings of
ICE 2010, Electronic Proceedings in Theoretical Computer Science 38, Open Publishing Association, pp.
99–114, doi:10.4204/EPTCS.38.10.

[9] C. Cassandras & S. Lafortune (2004): Introduction to discrete event systems. Kluwer Academic Publishers.
[10] V. Chandra, Z. Huang, W. Qiu & R. Kumar (2004): Prioritized Composition With Exclusion and Genera-

tion for the Interaction and Control of Discrete Event Systems. Mathematical and Computer Modelling of
Dynamical Systems 9(3), pp. 255 – 280.

[11] M. Fabian & B. Lennartson (1996): On non-deterministic supervisory control. Proceedings of the 35th IEEE
Decision and Control 2, pp. 2213–2218.

[12] R. J. van Glabbeek (2001): The linear time–branching time spectrum I. Handbook of Process Algebra , pp.
3–99.

[13] M. Heymann & F. Lin (1998): Discrete-Event Control of Nondeterministic Systems. IEEE Transactions on
Automatic Control 43(1), pp. 3–17, doi:10.1109/9.654883.

[14] M. Heymann & G. Meyer (1991): Algebra of discrete event processes. Technical Report NASA 102848,
NASA Ames Research Center.

[15] R. Kumar & M. A. Shayman (1996): Nonblocking Supervisory Control of Nondeterministic Sys-
tems via Prioritized Synchronization. IEEE Transactions on Automatic Control 41(8), pp. 1160–1175,
doi:10.1109/9.533677.

[16] R. Kumar & C. Zhou (2007): Control of Nondeterministic Discrete Event Systems for Simula-
tion Equivalence. IEEE Transactions on Automation Science and Engineering 4(3), pp. 340–349,
doi:10.1109/TASE.2006.891474.

[17] C. Ma & W. M. Wonham (2005): Nonblocking Supervisory Control of State Tree Structures. Lecture Notes
in Control and Information Sciences 317, Springer.

[18] J. Markovski, K. G. M. Jacobs, D. A. van Beek, L. J. A. M. Somers & J. E. Rooda (2010): Coordination
of Resources using Generalized State-Based Requirements. In: Proceedings of WODES 2010, IFAC, pp.
300–305.

[19] S. Miremadi, K. Akesson & B. Lennartson (2008): Extraction and representation of a supervisor using
guards in extended finite automata. In: Proceedings of WODES 2008, IEEE, pp. 193 –199.

[20] A. Overkamp (1997): Supervisory Control Using Failure Semantics and Partial Specifications. IEEE Trans-
actions on Automatic Control 42(4), pp. 498–510, doi:10.1109/9.566659.

[21] G. D. Plotkin (2004): A structural approach to operational semantics. The Journal of Logic and Algebraic
Programming 60-61, pp. 17–139, doi:10.1016/j.jlap.2004.05.001.

[22] P. J. Ramadge & W. M. Wonham (1987): Supervisory Control of a Class of Discrete Event Processes. SIAM
Journal on Control and Optimization 25(1), pp. 206–230, doi:10.1137/0325013.

[23] J. J. M. M. Rutten (1999): Coalgebra, concurrency, and control. SEN Report R-9921, Center for Mathematics
and Computer Science, Amsterdam, The Netherlands.

[24] P. Tabuada (2008): Controller synthesis for bisimulation equivalence. Systems and Control Letters 57(6), pp.
443–452, doi:10.1016/j.sysconle.2007.11.005.

[25] S. Xu & R. Kumar (2008): Asynchronous implementation of synchronous discrete event control. In: Proceed-
ings of WODES 2008, IEEE, pp. 181 –186.

http://dx.doi.org/10.1016/S0304-3975(96)00253-8
http://dx.doi.org/10.1023/A:1008301317459
http://dx.doi.org/10.4204/EPTCS.38.10
http://dx.doi.org/10.1109/9.654883
http://dx.doi.org/10.1109/9.533677
http://dx.doi.org/10.1109/TASE.2006.891474
http://dx.doi.org/10.1109/9.566659
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1137/0325013
http://dx.doi.org/10.1016/j.sysconle.2007.11.005

Baeten, van Beek, van Hulst, Markovski 55

[26] C. Zhou, R. Kumar & S. Jiang (2006): Control of nondeterministic discrete-event systems for bisimulation
equivalence. IEEE Transactions on Automatic Control 51(5), pp. 754–765, doi:10.1109/TAC.2006.875036.

http://dx.doi.org/10.1109/TAC.2006.875036

	1 Introduction
	2 Process theory TCP*
	3 Control Loop with Event-Based Observations
	4 Control Loop with State-Based Observations
	5 Coordination Control of Maintenance Procedures
	6 Conclusions and Future Work

