8,073 research outputs found

    Five-loop \sqrt\epsilon-expansions for random Ising model and marginal spin dimensionality for cubic systems

    Full text link
    The \sqrt\epsilon-expansions for critical exponents of the weakly-disordered Ising model are calculated up to the five-loop order and found to possess coefficients with irregular signs and values. The estimate n_c = 2.855 for the marginal spin dimensionality of the cubic model is obtained by the Pade-Borel resummation of corresponding five-loop \epsilon-expansion.Comment: 9 pages, TeX, no figure

    A Difference Version of Nori's Theorem

    Full text link
    We consider (Frobenius) difference equations over (F_q(s,t), phi) where phi fixes t and acts on F_q(s) as the Frobenius endomorphism. We prove that every semisimple, simply-connected linear algebraic group G defined over F_q can be realized as a difference Galois group over F_{q^i}(s,t) for some i in N. The proof uses upper and lower bounds on the Galois group scheme of a Frobenius difference equation that are developed in this paper. The result can be seen as a difference analogue of Nori's Theorem which states that G(F_q) occurs as (finite) Galois group over F_q(s).Comment: 29 page

    Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection

    Get PDF
    We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semi-group. We obtain existence and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and on the reflection measures

    Room temperature plasmon laser by total internal reflection

    Full text link
    Plasmon lasers create and sustain intense and coherent optical fields below light's diffraction limit with the unique ability to drastically enhance light-matter interactions bringing fundamentally new capabilities to bio-sensing, data storage, photolithography and optical communications. However, these important applications require room temperature operation, which remains a major hurdle. Here, we report a room temperature semiconductor plasmon laser with both strong cavity feedback and optical confinement to 1/20th of the wavelength. The strong feedback arises from total internal reflection of surface plasmons, while the confinement enhances the spontaneous emission rate by up to 20 times.Comment: 8 Page, 2 Figure

    The Presence of Weak Active Galactic Nuclei in High Redshift Star Forming Galaxies

    Full text link
    We present [OIII 5007A] observations of the star forming galaxy HDF-BMZ1299 (z=1.598) using Keck Observatory's Adaptive Optics system with the near-infrared integral field spectrograph OSIRIS. Using previous Halpha and [NII] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional HII diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central ~1.5 kiloparsec (0."2) are best explained by the presence of an AGN: log([NII]/Halpha)=-0.22+/-0.05 and 2sigma limit of log([OIII]/Hbeta)>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and HII regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift star forming galaxies, and we suggest that this may be a source of the "elevated" nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L_Halpha = 3.7e41 erg/s and L_[OIII] = 5.8e41 erg/s, making it one of the lowest luminosity AGN discovered at this early epoch.Comment: 15 pages, 4 figures, ApJ Accepted, new version to be published (updated text, figures, and table

    Towards a Secure SCRUM Process for Agile Web Application Development

    Get PDF

    Hard and soft news: A review of concepts, operationalizations and key findings

    Get PDF
    Over 30 years, a large body of research on what is often called ‘hard’ and ‘soft news’ has accumulated in communication studies. However, there is no consensus about what hard and soft news exactly is, or how it should be defined or measured. Moreover, the concept has not been clearly differentiated from or systematically related to concepts addressing very similar phenomena – tabloidization and ‘infotainment’. Consequently, the results of various studies are hard to compare and different scientific discourses on related issues remain unconnected. Against this backdrop, this article offers a conceptual analysis of the concept based on studies in English and other languages. We identify key dimensions of the concept and make suggestions for a standardized definition and multi-dimensional measurement of harder and softer news. In doing so, we propose to distinguish thematic, focus and style features as basic dimensions that – in their combination – make up harder and softer types of news

    A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem

    Full text link
    We consider the overdamped limit of two-dimensional double well systems perturbed by weak noise. In the weak noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double well system are varied, a unique MPEP may bifurcate into two equally likely MPEP's. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. In this paper we quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our analysis relies on the development of a new scaling theory, which yields `critical exponents' describing weak-noise behavior near the saddle, at the bifurcation point.Comment: LaTeX, 60 pages, 24 Postscript figures. Uses epsf macros to include the figures. A file in `uufiles' format containing the figures is separately available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/figures.uu and a Postscript version of the whole paper (figures included) is available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/paperF.p

    Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue

    Get PDF
    Background. Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods. Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results. The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions. Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis

    3D-nanoprinted antiresonant hollow-core microgap waveguide: an on-chip platform for integrated photonic devices and sensors.

    Get PDF
    Due to their unique capabilities, hollow-core waveguides are playing an increasingly important role, especially in meeting the growing demand for integrated and low-cost photonic devices and sensors. Here, we present the antiresonant hollow-core microgap waveguide as a platform for the on-chip investigation of light-gas interaction over centimeter-long distances. The design consists of hollow-core segments separated by gaps that allow external access to the core region, while samples with lengths up to 5 cm were realized on silicon chips through 3D-nanoprinting using two-photon absorption based direct laser writing. The agreement of mathematical models, numerical simulations and experiments illustrates the importance of the antiresonance effect in that context. Our study shows the modal loss, the effect of gap size and the spectral tuning potential, with highlights including extremely broadband transmission windows (>200 nm), very high contrast resonance (>60 dB), exceptionally high structural openness factor (18%) and spectral control by nanoprinting (control over dimensions with step sizes (i.e., increments) of 60 nm). The application potential was demonstrated in the context of laser scanning absorption spectroscopy of ammonia, showing diffusion speeds comparable to bulk diffusion and a low detection limit. Due to these unique properties, application of this platform can be anticipated in a variety of spectroscopy-related fields, including bioanalytics, environmental sciences, and life sciences
    corecore