6,025 research outputs found

    Asymmetric core combustion in neutron stars and a potential mechanism for gamma ray bursts

    Full text link
    We study the transition of nuclear matter to strange quark matter (SQM) inside neutron stars (NSs). It is shown that the influence of the magnetic field expected to be present in NS interiors has a dramatic effect on the propagation of a laminar deflagration (widely studied so far), generating a strong acceleration of the flame in the polar direction. This results in a strong asymmetry in the geometry of the just formed core of hot SQM which resembles a cylinder orientated in the direction of the magnetic poles of the NS. This geometrical asymmetry gives rise to a bipolar emission of the thermal neutrino-antineutrino pairs produced in the process of SQM formation. The neutrino-antineutrino pairs annihilate into electron-positron pairs just above the polar caps of the NS giving rise to a relativistic fireball, thus providing a suitable form of energy transport and conversion to gamma emission that may be associated to short gamma ray bursts (GRBs).Comment: 2 figure

    Phase transitions in neutron star and magnetars and their connection with high energetic bursts in astrophysics

    Full text link
    The phase transition from normal hadronic matter to quark matter in neutron stars (NS) could give rise to several interesting phenomena. Compact stars can have such exotic states up to their surface (called strange stars (SS)) or they can have quark core surrounded by hadronic matter, known as hybrid stars (HS). As the state of matter of the resultant SS/HS is different from the initial hadronic matter, their masses also differ. Therefore, such conversion leads to huge energy release, sometimes of the order of 105310^{53} ergs. In the present work we study the qualitative energy released by such conversion. Recent observations reveal huge surface magnetic field in certain stars, termed magnetars. Such huge magnetic fields can modify the equations of state (EOS) of the matter describing the star. Therefore, the mass of magnetars are different from normal NS. The energy released during the conversion process from neutron magnetar (NM) to strange magnetar/hybrid magnetar (SS/HS) is different from normal NS to SS/HS conversion. In this work we calculate the energy release during the phase transition in magnetars. The energy released during NS to SS/HS conversion exceeds the energy released during NM to SM/HM conversion. The energy released during the conversion of NS to SS is always of the order of 105310^{53} ergs. The amount of energy released during such conversion can only be compared to the energy observed during the gamma ray bursts (GRB). The energy liberated during NM to HM conversion is few times lesser, and is not likely to power GRB at cosmological distances. However, the magnetars are more likely to lose their energy from the magnetic poles and can produce giant flares, which are usually associated with magnetars.Comment: 14 pages, 4 figures, 4 table

    The birth of strange stars: kinetics, hydrodynamics and phenomenology of supernovae and GRBs

    Get PDF
    We present a short review of strange quark matter in supernovae and related explosions, with particular attention to the issue of the propagation of the combustion in the dense stellar environment. We discuss the instabilities affecting the flame and present some new results of application to the turbulent regime. The transition to the distributed regime and further deflagration-to-detonation mechanism are addressed. Finally we show that magnetic fields may be important for this problem, because they modify the flame through the dispersion relations which characterize the instabilities. A tentative classification of explosive phenomena according to the value of the average local magnetic field affecting the burning and the type of stellar system in which this conversion is taking place is presented. As a general result, we conclude that "short" conversion timescales are always favored, since the burning falls in either the turbulent Rayleigh-Taylor (or even the distributed) regime, or perhaps in the detonation one. In both cases the velocity is several orders of magnitude larger than vlamv_{lam}, and therefore the latter is irrelevant in practice for this problem. Interesting perspectives for the study of this problem are still open and important issues need to be addressed.Comment: 23 pp., 1 .eps figur

    Soft Robotics. Bio-inspired Antagonistic Stiffening

    Get PDF
    Soft robotic structures might play a major role in the 4th industrial revolution. Researchers have demonstrated advantages of soft robotics over traditional robots made of rigid links and joints in several application areas including manufacturing, healthcare, and surgical interventions. However, soft robots have limited ability to exert larger forces and change their stiffness on demand over a wide range. Stiffness can be achieved as a result of the equilibrium of an active and a passive reaction force or of two active forces antagonistically collaborating. This paper presents a novel design paradigm for a fabric-based Variable Stiffness System including potential applications

    No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis

    Get PDF
    BACKGROUND: Mitochondrial dysfunction is an established feature of multiple sclerosis (MS). We recently described high levels of mitochondrial DNA (mtDNA) deletions within respiratory enzyme-deficient (lacking mitochondrial respiratory chain complex IV with intact complex II) neurons and choroid plexus epithelial cells in progressive MS. OBJECTIVES: The objective of this paper is to determine whether respiratory enzyme deficiency and mtDNA deletions in MS were in excess of age-related changes within muscle, which, like neurons, are post-mitotic cells that frequently harbour mtDNA deletions with ageing and in disease. METHODS: In progressive MS cases (n=17), known to harbour an excess of mtDNA deletions in the central nervous system (CNS), and controls (n=15), we studied muscle (paraspinal) and explored mitochondria in single fibres. Histochemistry, immunohistochemistry, laser microdissection, real-time polymerase chain reaction (PCR), long-range PCR and sequencing were used to resolve the single muscle fibres. RESULTS: The percentage of respiratory enzyme-deficient muscle fibres, mtDNA deletion level and percentage of muscle fibres harbouring high levels of mtDNA deletions were not significantly different in MS compared with controls. CONCLUSION: Our findings do not provide support to the existence of a diffuse mitochondrial abnormality involving multiple systems in MS. Understanding the cause(s) of the CNS mitochondrial dysfunction in progressive MS remains a research priority

    Leptin Activates Anorexigenic POMC Neurons through a Neural Network in the Arcuate Nucleus

    Get PDF
    The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus7 are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (g-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamu

    Erythropoietin receptor expression is a potential prognostic factor in human lung adenocarcinoma

    Get PDF
    Recombinant human erythropoietins (rHuEPOs) are used to treat cancer-related anemia. Recent preclinical studies and clinical trials, however, have raised concerns about the potential tumor-promoting effects of these drugs. Because the clinical significance of erythropoietin receptor (EPOR) signaling in human non-small cell lung cancer (NSCLC) also remains controversial, our aim was to study whether EPO treatment modifies tumor growth and if EPOR expression has an impact on the clinical behavior of this malignancy. A total of 43 patients with stage III-IV adenocarcinoma (ADC) and complete clinicopathological data were included. EPOR expression in human ADC samples and cell lines was measured by quantitative real-time polymerase chain reaction. Effects of exogenous rHuEPOalpha were studied on human lung ADC cell lines in vitro. In vivo growth of human ADC xenografts treated with rHuEPOalpha with or without chemotherapy was also assessed. In vivo tumor and endothelial cell (EC) proliferation was determined by 5-bromo-2'-deoxy-uridine (BrdU) incorporation and immunofluorescent labeling. Although EPOR mRNA was expressed in all of the three investigated ADC cell lines, rHuEPOalpha treatment (either alone or in combination with gemcitabine) did not alter ADC cell proliferation in vitro. However, rHuEPOalpha significantly decreased tumor cell proliferation and growth of human H1975 lung ADC xenografts. At the same time, rHuEPOalpha treatment of H1975 tumors resulted in accelerated tumor endothelial cell proliferation. Moreover, in patients with advanced stage lung ADC, high intratumoral EPOR mRNA levels were associated with significantly increased overall survival. This study reveals high EPOR level as a potential novel positive prognostic marker in human lung ADC

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    Incorporating gene co-expression network in identification of cancer prognosis markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extensive biomedical studies have shown that clinical and environmental risk factors may not have sufficient predictive power for cancer prognosis. The development of high-throughput profiling technologies makes it possible to survey the whole genome and search for genomic markers with predictive power. Many existing studies assume the interchangeability of gene effects and ignore the coordination among them.</p> <p>Results</p> <p>We adopt the weighted co-expression network to describe the interplay among genes. Although there are several different ways of defining gene networks, the weighted co-expression network may be preferred because of its computational simplicity, satisfactory empirical performance, and because it does not demand additional biological experiments. For cancer prognosis studies with gene expression measurements, we propose a new marker selection method that can properly incorporate the network connectivity of genes. We analyze six prognosis studies on breast cancer and lymphoma. We find that the proposed approach can identify genes that are significantly different from those using alternatives. We search published literature and find that genes identified using the proposed approach are biologically meaningful. In addition, they have better prediction performance and reproducibility than genes identified using alternatives.</p> <p>Conclusions</p> <p>The network contains important information on the functionality of genes. Incorporating the network structure can improve cancer marker identification.</p

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201
    corecore