10 research outputs found
Conformational control of the binding of diatomic gases to cytochrome c′
The cytochromes c′ (CYTcp) are found in denitrifying, methanotrophic and photosynthetic bacteria. These proteins are able to form stable adducts with CO and NO but not with O2. The binding of NO to CYTcp currently provides the best structural model for the NO activation mechanism of soluble guanylate cyclase. Ligand binding in CYTcps has been shown to be highly dependent on residues in both the proximal and distal heme pockets. Group 1 CYTcps typically have a phenylalanine residue positioned close to the distal face of heme, while for group 2, this residue is typically leucine. We have structurally, spectroscopically and kinetically characterised the CYTcp from Shewanella frigidimarina (SFCP), a protein that has a distal phenylalanine residue and a lysine in the proximal pocket in place of the more common arginine. Each monomer of the SFCP dimer folds as a 4-alpha-helical bundle in a similar manner to CYTcps previously characterised. SFCP exhibits biphasic binding kinetics for both NO and CO as a result of the high level of steric hindrance from the aromatic side chain of residue Phe 16. The binding of distal ligands is thus controlled by the conformation of the phenylalanine ring. Only a proximal 5-coordinate NO adduct, confirmed by structural data, is observed with no detectable hexacoordinate distal NO adduct
Optimized Negative-Staining Protocol for Lipid-Protein Interactions Investigated by Electron Microscopy.
A large number of proteins are capable of inserting themselves into lipids, and interacting with membranes, such as transmembrane proteins and apolipoproteins. Insights into the lipid-protein interactions are important in understanding biological processes, and the structure of proteins at the lipid binding stage can help identify their roles and critical functions. Previously, such structural determination was challenging to obtain because the traditional methods, such as X-ray crystallography, are unable to capture the conformational and compositional heterogeneity of protein-lipid complexes. Electron microscopy (EM) is an alternative approach to determining protein structures and visualizing lipid-protein interactions directly, and negative-staining (OpNS), a subset of EM techniques, is a rapid, frequently used qualitative approach. The concern, however, is that current NS protocols often generate artifacts with lipid-related proteins, such as rouleaux formation from lipoproteins. To overcome this artifact formation, Ren and his colleagues have refined early NS protocols, and developed an optimized NS protocol that validated by comparing images of lipoproteins from cryo-electron microscopy (cryo-EM). This optimized NS protocol produces "near native-state" particle images and high contrast images of the protein in its native lipid-binding state, which can be used to create higher-quality three-dimensional (3D) reconstruction by single-particle analysis and electron tomography (e.g. IPET). This optimized protocol is thus a promising hands-on approach for examining the structure of proteins at their lipid-binding status
Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology
The soluble form of guanylate cyclase (sGC) and cGMP signaling are major regulators of pulmonary vasodilation and vascular remodeling that protect the pulmonary circulation from hypertension development. Nitric oxide, reactive oxygen species, thiol and heme redox, and heme biosynthesis control mechanisms regulating the production of cGMP by sGC. In addition, a cGMP-independent mechanism regulates protein kinase G through thiol oxidation in manner controlled by peroxide metabolism and NADPH redox. Multiple aspects of these regulatory processes contribute to physiological and pathophysiological regulation of the pulmonary circulation, and create potentially novel therapeutic targets for the treatment of pulmonary vascular disease
CO and NO bind to Fe(II) DiGeorge critical region 8 heme but do not restore primary microRNA processing activity
The RNA-binding heme protein DiGeorge critical region 8 (DGCR8) and its ribonuclease partner Drosha cleave primary transcripts of microRNA (pri-miRNA) as part of the canonical microRNA (miRNA) processing pathway. Previous studies show that bis-cysteine thiolate-coordinated Fe(III) DGCR8 supports pri-miRNA processing activity, while Fe(II) DGCR8 does not. In this study, we further characterized Fe(II) DGCR8 and tested whether CO or NO might bind and restore pri-miRNA processing activity to the reduced protein. Fe(II) DGCR8 RNA-binding heme domain (Rhed) undergoes a pH-dependent transition from 6-coordinate to 5-coordinate, due to protonation and loss of a lysine ligand; the ligand bound throughout the pH change is a histidine. Fe(II) Rhed binds CO and NO from 6- and 5-coordinate states, forming common CO and NO adducts at all pHs. Fe(II)-CO Rhed is 6-coordinate, low-spin, and pH insensitive with the histidine ligand retained, suggesting that the protonatable lysine ligand has been replaced by CO. Fe(II)-NO Rhed is 5-coordinate and pH insensitive. Fe(II)-NO also forms slowly upon reaction of Fe(III) Rhed with excess NO via a stepwise process. Heme reduction by NO is rate-limiting, and the rate would be negligible at physiological NO concentrations. Importantly, in vitro pri-miRNA processing assays show that both CO- and NO-bound DGCR8 species are inactive. Fe(II), Fe(II)-CO, and Fe(II)-NO Rhed do not bear either of the cysteine ligands found in the Fe(III) state. These data support a model in which the bis-cysteine thiolate ligand environment of Fe(III) DGCR8 is necessary for establishing proper pri-miRNA binding and enabling processing activity