525 research outputs found

    Formation of Power-law Energy Spectra in Space Plasmas by Stochastic Acceleration due to Whistler-Mode Waves

    Get PDF
    A non-relativistic Fokker-Planck equation for the electron distribution function is formulated incorporating the effects of stochastic acceleration by whistler-mode waves and Coulomb collisions. The stationary solution ff to the equation, subject to a zero-flux boundary condition, is found to be a generalized Lorentzian (or kappa) distribution, which satisfies f∝v−2(Îș+1)f\propto v^{-2(\kappa+1)} for large velocity vv, where Îș\kappa is the spectral index. The parameter Îș\kappa depends strongly on the relative wave intensity RR. Taking into account the critical energy required for resonance of electrons with whistlers, we calculate a range of values of RR for each of a number of different space plasmas for which kappa distributions can be expected to be formed. This study is one of the first in the literature to provide a theoretical justification for the formation of generalized Lorentzian (or kappa) particle distribution functions in space plasmas.Comment: 14 page-Latex, 1 ps-figure, agums.st

    Scaling and exact solutions for the flux creep problem in a slab superconductor

    Full text link
    The flux creep problem for a superconductor slab placed in a constant or time-dependent magnetic field is considered. Logarithmic dependence of the activation energy on the current density is assumed, U=U0 ln(J/Jc), with a field dependent Jc. The density B of the magnetic flux penetrating into the superconductor, is shown to obey a scaling law, i.e., the profiles B(x) at different times can be scaled to a function of a single variable. We found exact solution for the scaling function in some specific cases, and an approximate solution for a general case. The scaling also holds for a slab carrying transport current I resulting in a power-law V(I) with exponent p~1. When the flux fronts moving from two sides of the slab collapse at the center, the scaling is broken and p crosses over to U0/kT.Comment: RevTex, 10 pages including 6 figures, submitted to Phys.Rev.

    Hollow carbon spheres as an efficient dopant for enhancing critical current density of MgB2 based tapes

    Full text link
    A significant enhancement of Jc and Hirr in MgB2 tapes has been achieved by the in situ powder-in-tube method utilizing hollow carbon spheres (HCS) as dopants. At 4.2 K, the transport Jc for the 850C sintered samples reached 3.1x10^4, and 1.4x10^4 A/cm^2 at 10 and 12 T, respectively, and were better than those of optimal nano-SiC doped tapes. Furthermore, the Hirr for doped sample was raised up to 16.8 T at 10 K due to the carbon substitution effect. The results demonstrate that HCS is one of the most promising dopants besides nano-carbon and SiC for the enhancement of current capacity for MgB2 in high fields.Comment: 14 pages, 5 figure

    New Fe-based superconductors: properties relevant for applications

    Full text link
    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length, and unconventional pairing, On the other hand the Fe-based superconductors have metallic parent compounds, and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, the supposed order parameter symmetry is s wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviours and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest Tc, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates, while the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the Tc of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families

    Prospects for Improving the Intrinsic and Extrinsic Properties of Magnesium Diboride Superconducting Strands

    Full text link
    The magnetic and transport properties of magnesium diboride films represent performance goals yet to be attained by powder-processed bulk samples and conductors. Such performance limits are still out of the reach of even the best magnesium diboride magnet wire. In discussing the present status and prospects for improving the performance of powder-based wire we focus attention on (1) the intrinsic (intragrain) superconducting properties of magnesium diboride, Hc2 and flux pinning, (2) factors that control the efficiency with which current is transported from grain-to-grain in the conductor, an extrinsic (intergrain) property. With regard to Item-(1), the role of dopants in Hc2 enhancement is discussed and examples presented. On the other hand their roles in increasing Jc, both via Hc2 enhancement as well as direct fluxoid/pining-center interaction, are discussed and a comprehensive survey of Hc2 dopants and flux-pinning additives is presented. Current transport through the powder-processed wire (an extrinsic property) is partially blocked by the inherent granularity of the material itself and the chemical or other properties of the intergrain surfaces. These and other such results indicate that in many cases less than 15% of the conductor's cross sectional area is able to carry transport current. It is pointed out that densification in association with the elimination of grain-boundary blocking phases would yield five-to ten-fold increases in Jc in relevant regimes, enabling the performance of magnesium diboride in selected applications to compete with that of Nb-Sn

    Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes

    Full text link
    we identify the intrinsic bulk pairing symmetry for both electron and hole-doped cuprates from the existing bulk- and nearly bulk-sensitive experimental results such as magnetic penetration depth, Raman scattering, single-particle tunneling, Andreev reflection, nonlinear Meissner effect, neutron scattering, thermal conductivity, specific heat, and angle-resolved photoemission spectroscopy. These experiments consistently show that the dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave with eight line nodes, and of anisotropic s-wave in electron-doped cuprates. The proposed pairing symmetries do not contradict some surface- and phase-sensitive experiments which show a predominant d-wave pairing symmetry at the degraded surfaces. We also quantitatively explain the phase-sensitive experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure

    Cosmic Microwave Background Temperature and Polarization Anisotropy in Brans-Dicke Cosmology

    Get PDF
    We develop a formalism for calculating cosmic microwave background (CMB) temperature and polarization anisotropies in cosmological models with Brans-Dicke gravity. We then modify publicly available Boltzmann codes to calculate numerically the temperature and polarization power spectra. Results are illustrated with a few representative models. Comparing with the general-relativistic model with the same cosmological parameters, both the amplitude and the width of the acoustic peaks are different in the Brans-Dicke models. We use a covariance-matrix calculation to investigate whether the effects of Brans-Dicke gravity are degenerate with those of variation in other cosmological parameters and to simultaneously determine whether forthcoming CMB maps might be able to distinguish Brans-Dicke and general-relativistic cosmology. Although the predicted power spectra for plausible Brans-Dicke models differ from those in general relativity only slightly, we find that MAP and/or the Planck Surveyor may in principle provide a test of Brans-Dicke theory that is competitive to solar-system tests. For example, if all other parameters except for the CMB normalization are fixed, a value of the Brans-Dicke parameter omega as large as 500 could be identified with MAP, and for Planck, values as large as omega \simeq3000 could be identified; these sensitivities are decreased roughly by a factor of 3 if we marginalize over the baryon density, Hubble constant, spectral index, and reionization optical depth. In more general scalar-tensor theories, omega may evolve with time, and in this case, the CMB probe would be complementary to that from solar-system tests.Comment: 27 pages, 10 figures, typeset using RevTe

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∌20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    The Echinococcus canadensis (G7) genome: A key knowledge of parasitic platyhelminth human diseases

    Get PDF
    Background: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. Results: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. Conclusions: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.Fil: Maldonado, Lucas Luciano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Assis, Juliana. FundaciĂłn Oswaldo Cruz; BrasilFil: Gomes AraĂșjo, FlĂĄvio M.. FundaciĂłn Oswaldo Cruz; BrasilFil: Salim, Anna C. M.. FundaciĂłn Oswaldo Cruz; BrasilFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Cucher, Marcela Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Camicia, Federico. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Fox, Adolfo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Oliveira, Guilherme. Instituto TecnolĂłgico Vale; Brasil. FundaciĂłn Oswaldo Cruz; BrasilFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; Argentin
    • 

    corecore