2,107 research outputs found
Avoiding Chaos in Wonderland
Wonderland, a compact, integrated economic, demographic and environmental
model is investigated using methods developed for studying critical phenomena.
Simulation results show the parameter space separates into two phases, one of
which contains the property of long term, sustainable development. By employing
information contain in the phase diagram, an optimal strategy involving
pollution taxes is developed as a means of moving a system initially in a
unsustainable region of the phase diagram into a region of sustainability while
ensuring minimal regret with respect to long term economic growth.Comment: 22 pages, 9 figures. Submitted to Physica
The role of asymmetric interactions on the effect of habitat destruction in mutualistic networks
Plant-pollinator mutualistic networks are asymmetric in their interactions:
specialist plants are pollinated by generalist animals, while generalist plants
are pollinated by a broad involving specialists and generalists. It has been
suggested that this asymmetric ---or disassortative--- assemblage could play an
important role in determining the equal susceptibility of specialist and
generalist plants under habitat destruction. At the core of the argument lies
the observation that specialist plants, otherwise candidates to extinction,
could cope with the disruption thanks to their interaction with generalist
pollinators. We present a theoretical framework that supports this thesis. We
analyze a dynamical model of a system of mutualistic plants and pollinators,
subject to the destruction of their habitat. We analyze and compare two
families of interaction topologies, ranging from highly assortative to highly
disassortative ones, as well as real pollination networks. We found that
several features observed in natural systems are predicted by the mathematical
model. First, there is a tendency to increase the asymmetry of the network as a
result of the extinctions. Second, an entropy measure of the differential
susceptibility to extinction of specialist and generalist species show that
they tend to balance when the network is disassortative. Finally, the
disappearance of links in the network, as a result of extinctions, shows that
specialist plants preserve more connections than the corresponding plants in an
assortative system, enabling them to resist the disruption.Comment: 14 pages, 7 figure
Zeolite-Promoted Platinum Catalyst for Efficient Reduction of Nitrogen Oxides With Hydrogen
Internal combustion engine fueled by carbon-free hydrogen (H2-ICE) offers a promising alternative for sustainable transportation. Herein, we report a facile and universal strategy through the physical mixing of Pt catalyst with zeolites to significantly improve the catalytic performance in the selective catalytic reduction of nitrogen oxides (NOx) with H2 (H2-SCR), a process aiming at NOx removal from H2-ICE. Via the physical mixing of Pt/TiO2 with Y zeolite (Pt/TiO2 + Y), a remarkable enhancement of NOx reduction activity and N2 selectivity was simultaneously achieved. The incorporation of Y zeolite effectively captured the in-situ generated water, fostering a water-rich environment surrounding the Pt active sites. This environment weakened the NO adsorption while concurrently promoting the H2 activation, leading to the strikingly elevated H2-SCR activity and N2 selectivity on Pt/TiO2 + Y catalyst. This study provides a unique, easy and sustainable physical mixing approach to achieve proficient heterogeneous catalysis for environmental applications
Lithium distribution across the membrane of motoneurons in the isolated frog spinal cord
Lithium sensitive microelectrodes were used to investigate the transmembrane distribution of lithium ions (Li+) in motoneurons of the isolated frog spinal cord. After addition of 5 mmol·l–1 LiCl to the bathing solution the extracellular diffusion of Li+ was measured. At a depth of 500 m, about 60 min elapsed before the extracellular Li+ concentration approached that of the bathing solution. Intracellular measurements revealed that Li+ started to enter the cells soon after reaching the motoneuron pool and after up to 120 min superfusion, an intra — to extracellular concentration ratio of about 0.7 was obtained. The resting membrane potential and height of antidromically evoked action potentials were not altered by 5 mmol·l–1 Li+
Immunology of naturally transmissible tumours.
Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/imm.1237
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
Recommended from our members
Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst.
Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC-CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation
Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst
Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC–CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation
Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies
Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations
Co-rotational Formulation for Bonded Joint Finite Elements
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97052/1/AIAA2012-1449.pd
- …