17 research outputs found

    Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor.

    Get PDF
    Increased habitat fragmentation, global warming and other human activities have caused a rise in the frequency of wildfires worldwide. To reduce the risks of uncontrollable fires, prescribed burns are generally conducted during the colder months of the year, a time when in many mammals torpor is expressed regularly. Torpor is crucial for energy conservation, but the low body temperatures (T b) are associated with a decreased responsiveness and torpid animals might therefore face an increased mortality risk during fires. We tested whether hibernators in deep torpor (a) can respond to the smell of smoke and (b) can climb to avoid fires at T bs below normothermic levels. Our data show that torpid eastern pygmy-possums (Cercartetus nanus) are able to detect smoke and also can climb. All males aroused from torpor when the smoke stimulus was presented at an ambient temperature (T a) of 15 °C (T b ∼18 °C), whereas females only raised their heads. The responses were less pronounced at T a 10 °C. The first coordinated movement of possums along a branch was observed at a mean T b of 15.6 °C, and animals were even able to climb their prehensile tail when they reached a mean T b of 24.4 °C. Our study shows that hibernators can sense smoke and move at low T b. However, our data also illustrate that at T b ≤13 °C, C. nanus show decreased responsiveness and locomotor performance and highlight that prescribed burns during winter should be avoided on very cold days to allow torpid animals enough time to respond

    Uncovering the Importance of Selenium in Muscle Disease

    Get PDF
    A connection between selenium bioavailability and development of muscular disorders both in humans and livestock has been established for a long time. With the development of genomics, the function of several selenoproteins was shown to be involved in muscle activity, including SELENON, which was linked to an inherited form of myopathy. Development of animal models has helped to dissect the physiological dysfunction due to mutation in the SELENON gene; however the molecular activity remains elusive and only recent analysis using both in vivo and in vitro experiment provided hints toward its function in oxidative stress defence and calcium transport control. This review sets out to summarise most recent findings for the importance of selenium in muscle function and the contribution of this information to the design of strategies to cure the diseases
    corecore