57 research outputs found

    Age-Related Reference Intervals of the Main Biochemical and Hematological Parameters in C57BL/6J, 129SV/EV and C3H/HeJ Mouse Strains

    Get PDF
    BACKGROUND: Although the mouse is the animal model most widely used to study the pathogenesis and treatment of human diseases, reference values for biochemical parameters are scanty or lacking for the most frequently used strains. We therefore evaluated these parameters in the C57BL/6J, 129SV/EV and C3H/HeJ mice. METHODOLOGY/PRINCIPAL FINDINGS: We measured by dry chemistry 26 analytes relative to electrolyte balance, lipoprotein metabolism, and muscle/heart, liver, kidney and pancreas functions, and by automated blood counter 5 hematological parameters in 30 animals (15 male and 15 female) of each mouse strain at three age ranges: 1-2 months, 3-8 months and 9-12 months. Whole blood was collected from the retro-orbital sinus. We used quality control procedures to investigate analytical imprecision and inaccuracy. Reference values were calculated by non parametric methods (median and 2.5(th) and 97.5(th) percentiles). The Mann-Whitney and Kruskal-Wallis tests were used for between-group comparisons. Median levels of GLU, LDH, Chol and BUN were higher, and LPS, AST, ALP and CHE were lower in males than in females (p range: 0.05-0.001). Inter-strain differences were observed for: (1) GLU, t-Bil, K+, Ca++, PO(4)- (p<0.05) and for TAG, Chol, AST, Fe++ (p<0.001) in 4-8 month-old animals; (2) for CK, Crea, Mg++, Na++, K+, Cl- (p<0.05) and BUN (p<0.001) in 2- and in 10-12 month-old mice; and (3) for WBC, RBC, HGB, HCT and PLT (p<0.05) during the 1 year life span. CONCLUSION/SIGNIFICANCE: Our results indicate that metabolic variations in C57BL/6J, 129SV/EV and C3H/HeJ mice after therapeutic intervention should be evaluated against gender- and age-dependent reference intervals

    Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi

    Get PDF
    We experimentally identified and characterized 97 novel, non-protein-coding RNA candidates (npcRNAs) from the human pathogen Salmonella enterica serovar Typhi (hereafter referred to as S. typhi). Three were specific to S. typhi, 22 were restricted to Salmonella species and 33 were differentially expressed during S. typhi growth. We also identified Salmonella Pathogenicity Island-derived npcRNAs that might be involved in regulatory mechanisms of virulence, antibiotic resistance and pathogenic specificity of S. typhi. An in-depth characterization of S. typhi StyR-3 npcRNA showed that it specifically interacts with RamR, the transcriptional repressor of the ramA gene, which is involved in the multidrug resistance (MDR) of Salmonella. StyR-3 interfered with RamR–DNA binding activity and thus potentially plays a role in regulating ramA gene expression, resulting in the MDR phenotype. Our study also revealed a large number of cis-encoded antisense npcRNA candidates, supporting previous observations of global sense–antisense regulatory networks in bacteria. Finally, at least six of the npcRNA candidates interacted with the S. typhi Hfq protein, supporting an important role of Hfq in npcRNA networks. This study points to novel functional npcRNA candidates potentially involved in various regulatory roles including the pathogenicity of S. typhi

    Shorter courses of parenteral antibiotic therapy do not appear to influence response rates for children with acute hematogenous osteomyelitis: a systematic review

    Get PDF
    BACKGROUND: Acute hematogenous osteomyelitis (AHO) occurs primarily in children and is believed to evolve from bacteremia followed by localization of infection to the metaphysis of bones. Currently, there is no consensus on the route and duration of antimicrobial therapy to treat AHO. METHODS: We conducted a systematic review of a short versus long course of treatment for AHO due primarily to Staphylococcus aureus in children aged 3 months to 16 years. We searched Medline, Embase and the Cochrane trials registry for controlled trials. Clinical cure rate at 6 months was the primary outcome variable, and groups receiving less than 7 days of intravenous therapy were compared with groups receiving one week or longer of intravenous antimicrobials. RESULTS: 12 eligible prospective studies, one of which was randomized, were identified. The overall cure rate at 6 months for the short course of intravenous therapy was 95.2% (95% CI = 90.4, 97.7) compared to 98.8% (95% CI = 93.6, 99.8) for the longer course of therapy. There was no significant difference in the duration of oral therapy between the two groups. CONCLUSIONS: Given the potential increased morbidity and cost associated with longer courses of intravenous therapy, this finding should be confirmed through a randomized controlled equivalence trial

    Properties of the Permeability Transition in VDAC1-/- Mitochondria

    No full text
    Opening of the permeability transition pore (PTP), a high-conductance mitochondrial channel, causes mitochondrial dysfunction with Ca2+ deregulation, ATP depletion, release of pyridine nucleotides and of mitochondrial apoptogenic proteins. Despite major efforts, the molecular nature of the PTP remains elusive. A compound library screening led to the identification of a novel high affinity PTP inhibitor (Ro 68-3400), which labeled a 3c32 kDa protein that was identified as isoform 1 of the voltage-dependent anion channel (VDAC1) [A.M. Cesura, E. Pinard, R. Schubenel, V. Goetschy, A. Friedlein, H. Langen, P. Polcic, M.A. Forte, P. Bernardi, J.A. Kemp, The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J. Biol. Chem. 278 (2003) 49812\u201349818]. In order to assess the role of VDAC1 in PTP formation and activity, we have studied the properties of mitochondria from VDAC1 12/ 12 mice. The basic properties of the PTP in VDAC1 12/ 12 mitochondria were indistinguishable from those of strain-matched mitochondria from wild-type CD1 mice, including inhibition by Ro 68-3400, which labeled identical proteins of 32 kDa in both wild-type and VDAC1 12/ 12 mitochondria. The labeled protein could be separated from all VDAC isoforms. While these results do not allow to exclude that VDAC is part of the PTP, they suggest that VDAC is not the target for PTP inhibition by Ro 68-3400
    corecore