29 research outputs found

    Impact of Chronic Kidney Disease on the Presence and Severity of Aortic Stenosis in Patients at High Risk for Coronary Artery Disease

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>We evaluated the impact of chronic kidney disease (CKD) on the presence and severity of aortic stenosis (AS) in patients at high risk for coronary artery disease (CAD).</p> <p>Methods</p> <p>One hundred and twenty consecutive patients who underwent invasive coronary angiography were enrolled. Aortic valve area (AVA) was calculated by the continuity equation using transthoracic echocardiography, and was normalized by body surface area (AVA index).</p> <p>Results</p> <p>Among all 120 patients, 78% had CAD, 55% had CKD (stage 3: 81%; stage 4: 19%), and 34% had AS (AVA < 2.0cm<sup>2</sup>). Patients with AS were older, more often female, and had a higher frequency of CKD than those without AS, but the prevalence of CAD and most other coexisting conventional risk factors was similar between patients with and without AS. Multivariate linear regression analysis indicated that only CKD and CAD were independent determinants of AVA index with standardized coefficients of -0.37 and -0.28, respectively. When patients were divided into 3 groups (group 1: absence of CKD and CAD, n = 16; group 2: presence of either CKD or CAD, n = 51; and group 3: presence of both CKD and CAD, n = 53), group 3 had the smallest AVA index (1.19 ± 0.30*# cm<sup>2</sup>/m<sup>2</sup>, *p < 0.05 vs. group 1: 1.65 ± 0.32 cm<sup>2</sup>/m<sup>2</sup>, and #p < 0.05 vs. group 2: 1.43 ± 0.29* cm<sup>2</sup>/m<sup>2</sup>) and the highest peak velocity across the aortic valve (1.53 ± 0.41*# m/sec; *p < 0.05 vs. group 1: 1.28 ± 0.29 m/sec, and #p < 0.05 vs. group 2: 1.35 ± 0.27 m/sec).</p> <p>Conclusion</p> <p>CKD, even pre-stage 5 CKD, has a more powerful impact on the presence and severity of AS than other conventional risk factors for atherosclerosis in patients at high risk for CAD.</p

    Molecular marks for epigenetic identification of developmental and cancer stem cells

    Get PDF
    Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states
    corecore