2,924 research outputs found

    Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains

    Get PDF
    AbstractIn this paper we study the numerical solution of parabolic Volterra integro-differential equations on certain unbounded two-dimensional spatial domains. The method is based on the introduction of a feasible artificial boundary and the derivation of corresponding artificial (fully transparent) boundary conditions. Two examples illustrate the application and numerical performance of the method

    Detection of Vacuum Birefringence with Intense Laser Pulses

    Full text link
    We propose a novel technique that promises hope of being the first to directly detect a polarization in the quantum electrodynamic (QED) vacuum. The technique is based upon the use of ultra-short pulses of light circulating in low dispersion optical resonators. We show that the technique circumvents the need for large scale liquid helium cooled magnets, and more importantly avoids the experimental pitfalls that plague existing experiments that make use of these magnets. Likely improvements in the performance of optics and lasers would result in the ability to observe vacuum polarization in an experiment of only a few hours duration.Comment: 4 pages, 1 figur

    Preliminary results using a P300 brain-computer interface speller: a possible interaction effect between presentation paradigm and set of stimuli

    Get PDF
    Fernández-Rodríguez Á., Medina-Juliá M.T., Velasco-Álvarez F., Ron-Angevin R. (2019) Preliminary Results Using a P300 Brain-Computer Interface Speller: A Possible Interaction Effect Between Presentation Paradigm and Set of Stimuli. In: Rojas I., Joya G., Catala A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, vol 11506. Springer, ChamSeveral proposals to improve the performance controlling a P300-based BCI speller have been studied using the standard row-column presentation (RCP) par-adigm. However, this paradigm could not be suitable for those patients with lack of gaze control. To solve that, the rapid serial visual presentation (RSVP) para-digm, which presents the stimuli located in the same position, has been proposed in previous studies. Thus, the aim of the present work is to assess if a stimuli set of pictures that improves the performance in RCP, could also improve the per-formance in a RSVP paradigm. Six participants have controlled four conditions in a calibration task: letters in RCP, pictures in RCP, letters in RSVP and pictures in RSVP. The results showed that pictures in RCP obtained the best accuracy and information transfer rate. The improvement effect given by pictures was greater in the RCP paradigm than in RSVP. Therefore, the improvements reached under RCP may not be directly transferred to the RSVP.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Realistic loophole-free Bell test with atom-photon entanglement

    Full text link
    The establishment of nonlocal correlations, obtained through the violation of a Bell inequality, is not only important from a fundamental point of view, but constitutes the basis for device-independent quantum information technologies. Although several nonlocality tests have been performed so far, all of them suffered from either the locality or the detection loopholes. Recent studies have suggested that the use of atom-photon entanglement can lead to Bell inequality violations with moderate transmission and detection efficiencies. In this paper we propose an experimental setup realizing a simple atom-photon entangled state that, under realistic experimental parameters available to date, achieves a significant violation of the Clauser-Horn-Shimony-Holt inequality. Most importantly, the violation remains when considering typical detection efficiencies and losses due to required propagation distances.Comment: 21 pages, 5 figures, 3 table, to appear in Nature Com
    corecore