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Abstract

In this paper we study the numerical solution of parabolic Volterra integro-differential equations on certain unbounded two-
dimensional spatial domains. The method is based on the introduction of a feasible artificial boundary and the derivation of corre-
sponding artificial (fully transparent) boundary conditions. Two examples illustrate the application and numerical performance of
the method.
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1. Introduction

Let � ⊆ R2 be a semi-infinite strip domain with boundary � = �i ∪ �U ∪ �L (as shown in Fig. 1). �U and �L are
assumed to be parallel.

Consider the following initial-boundary-value problem for a parabolic equation with memory term

�u

�t
+
∫ t

0
k(x, t − �)u(x, �) d� = ∇(�(x)∇u) − �(x)u + f (x, t), (x, t) ∈ � × (0, T ], (1.1)

u = g(x, t), (x, t) ∈ � × (0, T ], (1.2)

u(x, 0) = u0(x) x ∈ �, (1.3)

u(x, t) → 0 as x1 → +∞. (1.4)
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Fig. 1. Unbounded domain � and artificial boundary �e .

We assume that:

(i) �(x) − 1�0, �(x) − �0 �0 (�0 is a non-negative constant), and u0(x) has compact support;
Supp{�(x) − 1} ⊂ �̄0 := {x|x ∈ �̄ and x1 �d0},

Supp{�(x) − �0} ⊂ �̄0,

Supp{u0(x)} ⊂ �̄0.
(ii) f (x, t) and g(x, t) have compact support:

Supp{f } ⊂ �̄0 × [0, T ] and Supp{g} ⊂ �̄0 × [0, T ].
(iii) k(x, t) ≡ k0(t) for x1 �d0.

In order to solve this problem numerically we introduce an artificial boundary �e × [0, T ] defined by

�e := {x = (x1, x2) ∈ � : x1 = d, 0�x2 �b, d �d0}.
This artificial boundary divides the domain �̄ × [0, T ] into two parts, the bounded part �̄i × [0, T ] and the unbounded
part �e × [0, T ]

�i = {x|x ∈ � and x1 < d}, �e = �\�i .

Our aim is to present a feasible and computationally effective numerical scheme for the approximate solution of the
problem (1.1)–(1.4) on the bounded domain �̄i × [0, T ]. This hinges on the derivation of a suitable artificial boundary
condition on the given artificial boundary �e × [0, T ].

The artificial boundary method was introduced and analyzed for elliptic problems in [6,7]; see also [8,3]. In [4,5],
these artificial boundary techniques were extended to the heat equation and related parabolic PDEs, and their approach
was subsequently generalized [9] to one-dimensional “non-local” parabolic equations containing a memory term given
by a (regular or weakly singular) Volterra integral operator.

The purpose of the present paper is to describe the computational form of the artificial boundary method for parabolic
Volterra integro-differential equations of the form (1.1) on unbounded two-dimensional spatial domains given essentially
by a semi-infinite strip, and to illustrate its numerical performance. It will be seen in Sections 2 and 3 that passing from
one to two (or more) spatial dimensions is not trivial (compare also [7,8,4]).

The content of the paper is as follows. In Section 2 we derive the corresponding transparent artificial boundary
condition on �e ×[0, T ], significantly extending the approach in [9]. The reduction of the original problem (1.1)–(1.4)
to the bounded domain �i ×[0, T ] is presented in Section 3. Here, we also state and prove a first result dealing with the
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(L2-)convergence of the numerical scheme. Section 4 contains two numerical examples illustrating the effectiveness
and accuracy of our method.

The mathematical foundation (convergence analysis; a priori and a posteriori error estimates for the spatially
semidiscretized problem and its temporally (fully) discretized counterpart) of the artificial boundary methods for
one-dimensional and two-dimensional initial-boundary-value problems of the form (1.1)–(1.4), and resulting adaptive
versions, will be presented in a forthcoming sequel to this paper (see also Section 5).

2. The artificial boundary conditions

We consider the restriction of the original problem (1.1)–(1.4) on the domain �e ×[0, T ]. By the assumptions (i)–(iii)
(cf. Section 1), u(x, t) has to satisfy

�u

�t
+
∫ t

0
k0(t − �)u(x, �) d� = �u − �0u, x ∈ �e, 0� t �T , (2.1)

u|t=0 = 0, d �x1 � + ∞, 0�x2 �b, (2.2)

u = 0, d �x1 � + ∞, x2 = b or x2 = 0, (2.3)

u(x, t) → 0 when x1 → +∞. (2.4)

The problem (2.1)–(2.4) is an incompletely posed problem; it might have many solutions.
Let u(x, t) be a solution of the problem (2.1)–(2.4) possessing the form

u(x, t) =
∞∑

n=1

un(x1, t) sin
(n�

b
x2

)
, (2.5)

where un is given by

un(x1, t) = 2

b

∫ b

0
u(x1, y2, t) sin

(n�

b
y2

)
dy2. (2.6)

Then un(x1, t) has to satisfy

�un

�t
+
∫ t

0
k0(t − �)un(x1, �) d� = �2un

�x2
1

− �nun, d < x1 < + ∞, 0 < t �T ,

un|t=0 = 0, d �x1 � + ∞,

un → 0 as x1 → +∞,

where

�n = �0 +
(n�

b

)2
, n = 1, 2, . . . . (2.7)

Let

un = e−�nt�n. (2.8)

Then

�un

�t
= e−�nt

(
��n

�t
− �n�n

)
,

and

e−�nt

(
��n

�t
− �n�n

)
+
∫ t

0
k0(t − �)e−�n��n(x1, �) d� = e−�nt

(
�2�n

�x2
1

− �n�n

)
.
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This leads to

��n

�t
+
∫ t

0
k0(t − �)e�n(t−�)�n(x1, �) d� = �2�n

�x2
1

, d < x1 < + ∞, 0 < t �T ,

�n|t=0 = 0, x ∈ �,

�n → 0 as x1 → +∞.

Setting kn(t) = k0(t)e�nt , we see that �n = �n(x1, t) satisfies

��n

�t
+
∫ t

0
kn(t − �)�n(x1, �) d� = �2�n

�x2
1

, d < x1 < + ∞, 0 < t �T , (2.9)

�n|t=0 = 0, d �x1 � + ∞, (2.10)

�n → 0 as x1 → +∞. (2.11)

For given kn(t), the (one-dimensional) problem (2.9)–(2.11) has been studied in the paper by Han et al. [9].Accordingly,
let

�̂n(x1, s) :=
∫ +∞

0
exp(−st)�n(x1, t) dt

denote the Laplace transform of the unknown function �n(x1, t). In view of the Eq. (2.9) and the initial condition (2.10),
�̂n(x1, s) satisfies

(s + k̂n(s))�̂n(x1, s) = d2�̂n(x1, s)

dx2
1

, (2.12)

where k̂n(s) is the Laplace transform of the kernel kn(t). It follows from a basic property of the Laplace transform,
(L

{
f (t)eat

}= f̂ (s − a)), that

k̂n(s) := L{kn(t)} = L{k0(t)e
�nt } = k̂0(s − �n), n = 1, 2, . . . . (2.13)

Eq. (2.12) is a linear second-order differential equation with constant coefficients. Its general solution is given by

�̂n(x1, s) = C1(s) exp

{
−
√

s + k̂n(s)(x1 − d)

}
+ C2(s) exp

{√
s + k̂n(s)(x1 − d)

}
,

where x1 �d. Suppose that

Re

{√
s + k̂n(s)

}
> 0.

The condition (2.11) implies that C2(s) ≡ 0, and hence we have

�̂n(x1, s) = C1(s) exp

{
−
√

s + k̂n(s)(x1 − d)

}
, x1 �d. (2.14)

This yields

d�̂n(x1, s)

dx1
= −C1(s)

√
s + k̂n(s) exp

{
−
√

s + k̂n(s)(x1 − d)

}
. (2.15)

On the artificial boundary �e, we obtain

d�̂n(d, s)

dx1
= −

√
s + k̂n(s)�̂n(d, s). (2.16)
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Define

Hn(t) = √
�te−�ntL−1

⎧⎪⎨
⎪⎩
√

s + k̂n(s)

s

⎫⎪⎬
⎪⎭ . (2.17)

By (2.13), the explicit expression for the function Hn can be obtained by using the techniques in [9].
We deduce from Eq. (2.16) and the convolution theorem for the Laplace transform that

��n

�x1

∣∣∣∣
x1=d

= − 1√
�

∫ t

0

Hn(t − �)√
t − �

e�n(t−�) ��n(d, �)

��
d�. (2.18)

Using (2.8), we return to the unknown function un(x1, t) and its boundary conditions,

�un

�x1

∣∣∣∣
x1=d

= − 1√
�

∫ t

0

Hn(t − �)√
t − �

e−�n�
�

��
(un(d, �)e�n�) d�

= − 1√
�

∫ t

0

Hn(t − �)√
t − �

[
�un(d, �)

��
+ �nun(d, �)

]
d�. (2.19)

It thus follows from (2.6) and (2.19) that

�u

�x1

∣∣∣∣
x1=d

=
∞∑

n=1

�un

�x1

∣∣∣∣∣
x1=d

sin
(n�

b
x2

)

= − 1√
�

∞∑
n=1

{∫ t

0

Hn(t − �)√
t − �

[
�un(d, �)

��
+ �nun(d, �)

]
d� sin

(n�

b
x2

)}

= − 2

b
√

�

∞∑
n=1

{∫ t

0

∫ b

0

Hn(t − �)√
t − �

×
[
�u(d, y2, �)

��
+ �nu(d, y2, �)

]
sin
(n�

b
y2

)
sin
(n�

b
x2

)
dy2 d�

}

:= B(u|x1=d , t). (2.20)

We see that these artificial boundary conditions are non-local with respect to the temporal and spatial variables. The
condition (2.20) is the fully transparent artificial boundary condition on the given artificial boundary �e × [0, T ]. On
the right-hand side of (2.20), taking the first N terms, we obtain a series of approximate artificial boundary conditions
on �e × [0, T ], namely

�u

�x1

∣∣∣∣
x1=d

= − 2

b
√

�

N∑
n=1

∫ t

0

∫ b

0

Hn(t − �)√
t − �

sin
(n�

b
y2

)
sin
(n�

b
x2

)

×
[
�u(d, y2, �)

��
+ �nu(d, y2, �)

]
dy2 d�

:= BN(u|x1=d , t), N = 0, 1, 2, . . . , (2.21)

with u = uN .
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3. The reduced problems on the bounded domain

By the artificial boundary condition (2.20), the initial-boundary-value problem (1.1)–(1.4) is equivalent to the
following problem on the bounded domain �i × [0, T ]:

�u

�t
+
∫ t

0
k(x, t − �)u(x, �) d� = ∇(�(x)∇u) − �(x)u + f (x, t), (x, t) ∈ �i × (0, T ], (3.1)

u = g(x, t), (x, t) ∈ (� ∩ ��i ) × (0, T ], (3.2)

u(x, 0) = u0(x), x ∈ �i , (3.3)

�u

�x1

∣∣∣∣
x1=d

= B(u|x1=d , t). (3.4)

Using the approximate artificial boundary conditions (2.21), the problem (1.1)–(1.4) can be reduced to the following
approximating problems on the bounded domain �̄i × [0, T ]: denoting the approximation to u by uN , these problems
are given by

�uN

�t
+
∫ t

0
k(x, t − �)uN(x, �) d�

= ∇(�(x)∇uN) − �(x)uN + f (x, t), (x, t) ∈ �i × (0, T ], (3.5)

uN = g(x, t), (x, t) ∈ (� ∩ ��i ) × (0, T ], (3.6)

uN(x, 0) = u0(x), x ∈ �i , (3.7)

�uN

�x1

∣∣∣∣
x1=d

= BN(uN |x1=d , t), N = 0, 1, 2, . . . . (3.8)

The existence, uniqueness and the regularity properties of solutions to the reduced partial Volterra integro-differential
equations on bounded spatial domains with non-local artificial boundary conditions can be derived by using for example
the well-known energy method (or: variational method). Relevant details can be found in the monograph [2] by Chen
and Shih (see also its bibliography for additional references on this use of the energy method). Although [2] does not
explicitly deal with problems with non-local boundary conditions, the techniques described there are readily extended to
encompass our reduced problems with the non-local artificial boundary conditions (2.15) and (2.16), since the boundary
conditions contain only the lower-order terms.

The following theorem shows that sequence of (unique) solutions uN to the approximate problems (3.5)–(3.8)
converges in L2-norm.

Theorem 3.1. Both problem (3.1)–(3.4) and problem (3.5)–(3.8) have one, and only one, solution. Moreover, the
solution of (3.5)–(3.8) converges to the solution of (3.1)–(3.4), i.e., limN→+∞‖uN − u‖L2 = 0.

Proof. For ease of exposition we will assume that the initial function is g ≡ 0. The proof is based on the equivalent
weak form of the problem (3.1)–(3.4): find u(·, t) ∈ V := {v ∈ H 1(�i ) : v = 0 on �i} such that

(ut , v) + a(u, v) = −
∫ t

0
(k(x, t − �)u, v) d� − (�(x)u, v)

−
∫ t

0

1√
t − �

[b1(u�, v) + b2(u, v)] d� + (f, v), v ∈ V , (3.9)
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where

ut := �u

�t
, (u, v) :=

∫
�i

uv dx, a(u, v) :=
∫
�i

a(x)∇u∇v dx,

b1(u, v) := b1(u(x, �), v, t − �)

= 2

b
√

�

( ∞∑
n=1

∫ b

0

∫ b

0
Hn(t − �) sin

(n��

b

)
sin
(n�x2

b

)
u(d, �, �)v(d, x2) d� dx2

)
,

and

b2(u, v) := b2(u(x, �), v, t − �)

= 2

b
√

�

( ∞∑
n=1

∫ b

0

∫ b

0
�nHn(t − �) sin

(n��

b

)
sin
(n�x2

b

)
u(d, �, �)v(d, x2) d� dx2

)
.

The analogous equivalent weak form of (3.5)–(3.8) is given by: find uN ∈ V such that

(uN,t , v) + a(uN, v) = −
∫ t

0
(k(x, t − �)uN, v) d� − (�(x)uN, v)

−
∫ t

0

1√
t − �

[bN
1 (uN,�, v) + bN

2 (uN, v)] d� + (f, v), v ∈ V , (3.10)

where

bN
1 (u, v) := bN

1 (u(x, �), v, t − �)

= 2

b
√

�

(
N∑

n=1

∫ b

0

∫ b

0
Hn(t − �) sin

(n��

b

)
sin
(n�x2

b

)
u(d, �, �)v(d, x2) d� dx2

)
,

and

bN
2 (u, v) := bN

2 (u(x, �), v, t − �)

= 2

b
√

�

(
N∑

n=1

∫ b

0

∫ b

0
�nHn(t − �) sin

(n��

b

)
sin
(n�x2

b

)
u(d, �, �)v(d, x2) d� dx2

)
.

The following lemma contains the key to the proof.

Lemma 3.1. The bilinear form a(·, ·) is symmetric, continuous and coercive, that is,

a(u, v) = a(v, u), |a(u, v)|�	∗‖u‖H 1(�i )
‖v‖H 1(�i )

, 	∗‖u‖2
H 1(�i )

�a(u, u) ∀u, v ∈ V .

The bilinear forms bj (·, ·) and bN
j (·, ·) (j =1, 2) are symmetric, continuous and positive semi-definite, i.e., there exists

a positive constant C which is independent of d , N , such that

bj (u, v) = bj (v, u), bN
j (u, v) = bN

j (v, u) ∀u, v ∈ V , (3.11)

0�bN
j (u, u)�bj (u, u)�C‖u‖2

H 1(�i )
∀u ∈ V , (3.12)

|bj (u, v)| + |bN
j (u, v)|�C‖u‖H 1(�i )

‖v‖H 1(�i )
∀u, v ∈ V . (3.13)
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Proof. By observing that Hn and �n are positive, the proofs of (3.11)–(3.13) can be carried out, with a minor modifi-
cation, along the lines of the ones given in [3]. �

Lemma 3.1 leads directly to the uniqueness of the solutions to (3.1)–(3.4) and to (3.5)–(3.8). To prove that uN → u

as N → ∞ (in L2), we subtract (3.10) from (3.9) and obtain

(ut − uN,t , v) + a(u − uN, v)

= −
∫ t

0
(k(x, t − �)(u − uN), v) d� − (�(x)(u − uN), v)

−
∫ t

0

1√
t − �

[b1(u�, v) + b2(u, v)] d� +
∫ t

0

1√
t − �

[bN
1 (uN,�, v) + bN

2 (uN, v)] d�

= −
∫ t

0
(k(x, t − �)(u − uN), v) d� − (�(x)(u − uN), v)

−
∫ t

0

1√
t − �

[b1(u� − uN,�, v) + b2(u − uN,�, v)] d� −
∫ t

0

1√
t − �

[b1(uN,�, v) + b2(uN, v)] d�

+
∫ t

0

1√
t − �

[bN
1 (uN,�, v) + bN

2 (uN, v] d� ∀v ∈ V . (3.14)

We now take the limit as N → ∞ on both sides of (3.14): by observing that

−
∫ t

0

1√
t − �

[b1(uN,�, v) + b2(uN, v)] d� +
∫ t

0

1√
t − �

[bN
1 (uN,�, v) + bN

2 (uN, v)] d� → 0

and setting E := E(x, t) := ut (x, t) − limN→∞uN,t (x, t), (3.14) becomes

(Et , v) + a(E, v)

= −
∫ t

0
(k(x, t − �)E, v) d� − (�(x)E, v)

−
∫ t

0

1√
t − �

[b1(E, v) + b2(E, v)] d�, v ∈ V . (3.15)

Substituting v=E in (3.15) and using the properties of a(·, ·), bj (·, ·) (j =1, 2) and the positivity of k and � we obtain,
noting that E(x, 0) ≡ 0, the desired result that E = 0 in the weak (L2) sense. This completes our proof. �

4. Numerical solution of the reduced problem

We will illustrate the effectiveness and the accuracy of the numerical solution of the two-dimensional problem
(1.1)–(1.4) based on the artificial boundary conditions (3.8) by two examples. While the first example is a test problem
with known analytic solution, the second one is more typical of practical applications where the solution is unknown.

Example 4.1. Consider the problem

�u

�t
+
∫ t

0
k(t − �)u(x, �) d� = �u − �0u + f (x, t),

x = (x1, x2) ∈ � := [0, +∞) × [0, b], t ∈ [0, T ], (4.1)

u(0, x2, t) = x2(b − x2)t, u(x1, 0, t) = u(x1, b, t) = 0, t ∈ (0, T ], (4.2)

u(x, 0) = 0, (4.3)

u(x, t) → 0 as x1 → +∞, (4.4)
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where k(t) = e−�0t and

f (x, t) =
(

1 + �0t − �2
0t + t�0 + e−�0t − 1

�2
0

)
x2(b − x2)e

−�0x1 + 2te−�0x1 .

The exact solution of (4.1)–(4.4) is u(x, t) = x2(b − x2)te−�0x1 .

The reduced problem is given by

�u

�t
+
∫ t

0
k(t − �)u(x, �) d� = �u − �0u + f (x, t)

x ∈ �i := [0, d] × [0, b], t ∈ (0, T ], (4.5)

u(0, x2, t) = x2(b − x2)t, u(x1, 0, t) = u(x1, b, t) = 0, t ∈ (0, T ], (4.6)

u(x, 0) = 0, (4.7)

�u

�x1

∣∣∣∣
x1=d

= − 2

b
√

�

N∑
n=1

∫ t

0

∫ b

0

Hn(t − �)√
t − �

sin
(n�

b
y2

)
sin
(n�

b
x2

)

×
[
�u(d, y2, �)

��
+ �nu(d, y2, �)

]
dy2 d�, (4.8)

where

�n = �0 +
(n�

b

)2
,

Hn(t) = √
�te−�ntL−1

⎧⎪⎨
⎪⎩
√

s + k̂n(s)

s

⎫⎪⎬
⎪⎭

= e−�nt

⎧⎨
⎩1 + √

t

+∞∑
j=1

�j


j j !
∫ t

0
(t − s)j−1/2sj−1e(n�/b)2s ds

⎫⎬
⎭ , (4.9)


j = (j − 1/2)(j − 3/2) . . . (1/2),

and

�j := (−1)j−1(2j − 3)!!
2j j ! (with (−1)!! := 1).

This result was derived in Han et al. [9].
In order to discretize the above problem, we introduce a triangulation Th of �i , based on the mesh given by

0 = x0
1 < x1

1 < x2
1 < · · · < xI

1 = d, 0 = x0
2 < x1

2 < x2
2 < · · · < xJ

2 = b,
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0

2

d

b

�i

∆i,j
1∆i,j

x 2

x1

�

Fig. 2. Triangulation of �i .

and employ a uniform mesh on the interval [0, T ],

0 = t0 < t1 < t2 < · · · < tL = T

(see Fig. 2). Let � = T/L, h = max{d/I, b/J }.
We will use the finite element (Galerkin) method for the spatial discretization of the problem (4.5)–(4.8). The

underlying variational problem consists in finding u ∈ U so that for any v ∈ V ,

(
�u

�t
, v

)
+
∫ t

0
k(t − s)(u(x, s), v) ds = − a(u, v) − �0(u, v) + (f, v)

+
∫ b

0

�u(d, y2, t)

�x1
v(d, y2) dy2, (4.10)

where

(u, v) =
∫
�i

uv dx,

a(u, v) =
∫
�i

∇u · ∇v dx.

The spaces U and V are given by

U := {u(x1, x2, t)| u(·, ·, t) ∈ L2(�i ),

u(x1, 0, t) = 0, u(x1, b, t) = 0, u(0, x2, t) = x2(b − x2)t},

V := {v ∈ H 1(�i )|v(0, x2) = 0, v(x1, 0) = 0, v(x1, b) = 0}.
We define the corresponding finite element spaces Uh and Vh by

Vh := {v ∈ C0(�i )|v|�k
i,j

is a bilinear function of x1 and x2,

1� i�I, 1�j �J, k = 1, 2},
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Uh := {uh(x1, x2, t)| : uh(·, ·, t) ∈ C0(�i ),

uh|�k
i,j

, �t uh|�k
i,j

is a bilinear function of x1 and x2, and

u(x1, 0, t) = 0, u(x1, b, t) = 0, u(0, x2, t) = x2(b − x2)t}.

Here, �k
i,j is the triangular element in �i with vertices (A, B, C) given by A = ((i − 1) · d/n, j · b/m), B = (i ·

d/n, (j − 1) · b/m), C = ((i − 1) · d/n, (j − 1) · b/m) when k = 1 and A= ((i − 1) · d/n, j · b/m), B = (i · d/n, (j −
1) · b/m), C = (i · d/n, j · b/m) when k = 2 (compare Fig. 2).

This leads to the following approximation problem for (4.10): find uh ∈ Uh, such that

(
�uh

�t
, v

)
+
∫ t

0
k(t − s)(uh(x, s), v) ds = − a(uh, v) − �0(uh, v) + (f, v)

+
∫ b

0

�uh(d, y2, t)

�x1
v(d, y2) dy2, (4.11)

for all v ∈ Vh. Let {�k(x)}Kk=1 be a basis of Vh. We then can write

uh(x1, x2, t) =
K∑

k=1

Xk(t)�k(x1, x2). (4.12)

Substitution of (4.12) into (4.11) leads to

K∑
k=1

X′
k(t)(�k, �k′) +

K∑
k=1

∫ t

0
k(t − s)Xk(s)(�k, �k′)

= −
K∑

k=1

Xk(t)a(�k, �k′) + (f, �k′) − �0

K∑
k=1

Xk(t)(�k, �k′)

+
∫ b

0

�uh(d, y2, t)

�x1
�k′(d, y2) dy2, k′ = 1, . . . , K . (4.13)

We will use the backward Euler method for the time-stepping in (4.13). This yields the numerical scheme

K∑
k=1

([
�0 + 1

�

]
(�k, �k′) + a(�k, �k′)

)
Xk(tL)

=
K∑

k=1

(
−�

L−1∑
l=0

k(tL − tl)Xk(tl) + 1

�
Xk(tL−1)

)
(�k, �k′)

+ (f (x1, x2, tL), �k′) +
∫ b

0

�uh(d, y2, t)

�x1
�k′(d, y2) dy2, k′ = 1, . . . , K . (4.14)

Remark 4.1. The coefficient matrix in the above system of linear algebraic equations is regular (see also the sequel
to the present paper, for a detailed analysis). This result is a consequence of the fact that the diffusion term in (1.1)
“dominates” the Volterra memory term (compare also [10]).
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By (4.8) and (4.9) we obtain

∫ b

0

�uh(d, y2, t)

�x
�k′(d, y2) dy2

=
∫ b

0

(
− 2

b
√

�

N∑
n=1

∫ t

0

∫ b

0

Hn(t − s)√
t − s

sin
(n�

b
r
)

sin
(n�

b
y2

)

×
[
�uh(d, r, s)

�s
+ �nuh(d, r, �)

]
dr ds

)
�k′(d, y2) dy2

= − 2

b
√

�

N∑
n=1

∫ b

0
sin
(n�

b
y2

)
�k′(d, y2) dy2

×
(∫ t

0

∫ b

0

Hn(t − s)√
t − s

sin
(n�

b
r
) [�uh(d, r, s)

�s
+ �nuh(d, r, �)

]
dr ds

)

= − 2

b
√

�

N∑
n=1

∫ b

0
sin
(n�

b
y2

)
�k′(d, y2) dy2

×
(

K∑
k=1

∫ b

0
sin
(n�

b
r
)

�k(d, r) dr

∫ t

0

Hn(t − s)√
t − s

(X′
k(s) + �nXk(s)) ds

)

= − 2

b
√

�

N∑
n=1

∫ b

0
sin
(n�

b
y2

)
�k′(d, y2) dy2

×
{

K∑
k=1

∫ b

0
sin
(n�

b
r
)

�k(d, r) dr

[
L−1∑
l=0

∫ tl+1

tl

Hn(tL − s)√
tL − s

ds

×
(

Xk(tl+1) − Xk(tl)

�
+ �nXk(tl+1)

)]}
.

The explicit expressions for the integrals
∫ tl+1
tl

Hn(tL − s)/
√

tL − s ds can be found in [9].
In order to illustrate performance of the above numerical scheme, we choose �0 = 5, b = 1, d = 2, L = 10, T = 0.5,

N = 5. A selection of numerical results is shown in Figs. 3, 4 and Table 1.

Example 4.2. We now turn to another example. Its analytical solution cannot be obtained exactly; moreover, its value
on the artificial boundary is not close to 0. This initial-boundary-value problem is

�u

�t
+
∫ t

0
k(t − �)u(x, �) d� = �u − �0u + f (x, t)

x ∈ � := [0, +∞) × [0, b], t ∈ [0, T ],
u(0, x2, t) = x2(b − x2)t, u(x1, 0, t) = u(x1, b, t) = 0, t ∈ (0, T ],
u(x, 0) = 0, x ∈ �,

u(x, t) → 0 as x1 → +∞,
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Fig. 3. The numerical solution at T = 0.5 when J × I = 64 × 128.

Fig. 4. The error at T = 0.5 when J × I = 64 × 128.

Table 1
The results for Example 1

h J × I
‖uh−u‖L2‖u‖L2

‖uh−u‖∞‖u‖∞

1/4 4 × 8 1.0754e − 1 1.1613e − 1
1/8 8 × 16 3.0232e − 2 3.7789e − 2
1/16 16 × 32 8.1801e − 3 1.0796e − 2
1/32 32 × 64 2.3516e − 3 2.8978e − 3
1/64 64 × 128 5.4289e − 4 2.8291e − 4
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Fig. 5. The numerical solution at T = 0.5 when J × I = 128 × 128.

Table 2
The results for Example 2

h J × I
‖uh−u‖L2‖u‖L2

‖uh−u‖∞‖u‖∞

1/4 4 × 4 2.4205e − 1 3.5468e − 1
1/8 8 × 8 7.0059e − 2 1.2047e − 1
1/16 16 × 16 1.8347e − 2 3.4713e − 2
1/32 32 × 32 4.6363e − 3 9.3144e − 3
1/64 64 × 64 1.1431e − 3 2.4125e − 3
1/128 128 × 128 2.6185e − 4 6.1377e − 4

where

k(t) = e−�0t ,

f (x, t) =
{

100x2(b − x2)e−5x1 + 200e−5x1 if x1 �d,

0 if x1 > d.

We employ the same numerical method as for Example 4.1 and select the values �0 = 1, b = d = 1, L = 10, T = 0.5,
N = 5 for the parameters. The numerical solution corresponding to J × I = 256 × 256 is used as the “exact” reference
solution. Fig. 5 and Table 2 illustrate the accuracy and the order of convergence of the scheme. Note that in this example
we have ‖u‖∞,�e

= 3.9633e − 2.

5. Conclusion

In this paper we have described the artificial boundary method for the approximate (numerical) solution of partial
Volterra integro-differential equations on certain (strip-like) unbounded two-dimensional domains, thus answering a
question raised at the end of [9]. The foregoing analysis suggests that the artificial boundary method can be readily
extended to doubly-infinite strip-like domains (see also [9]). We leave the details to the reader.

As we mentioned at the end of the Introduction, in a forthcoming sequel to the present paper we shall study the
derivation of (a priori and a posteriori) error estimates depending on the numbers d (cf. Fig. 1 and (2.2), (2.3)) and N
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(cf. (2.20) and (3.8)) and present alternative, more accurate, time-stepping methods based on discontinuous Galerkin
methods, thus extending the approaches of Larsson et al. [10], Ma [11], Ma and Brunner [12], and Brunner and Schötzau
[1]. These results will form the basis for adaptive time-stepping.
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