396 research outputs found

    Manganese as a Probe of Fungal Degradation of Wood

    Full text link
    Transition state metals, such as manganese (Mn) and iron (Fe), have been reported to be involved in fungal degradation of wood (Ellis, 1959; Shortl

    A Unifying Model of Genome Evolution Under Parsimony

    Get PDF
    We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph GG, a finite set of AVGs describe all parsimonious interpretations of GG, and this set can be explored with a few sampling moves.Comment: 52 pages, 24 figure

    CO-phylum: An Assembly-Free Phylogenomic Approach for Close Related Organisms

    Full text link
    Phylogenomic approaches developed thus far are either too time-consuming or lack a solid evolutionary basis. Moreover, no phylogenomic approach is capable of constructing a tree directly from unassembled raw sequencing data. A new phylogenomic method, CO-phylum, is developed to alleviate these flaws. CO-phylum can generate a high-resolution and highly accurate tree using complete genome or unassembled sequencing data of close related organisms, in addition, CO-phylum distance is almost linear with p-distance.Comment: 21 pages, 6 figure

    The economic burden of bronchiectasis - known and unknown:a systematic review

    Get PDF
    Abstract Background The increasing prevalence and recognition of bronchiectasis in clinical practice necessitates a better understanding of the economic disease burden to improve the management and achieve better clinical and economic outcomes. This study aimed to assess the economic burden of bronchiectasis based on a review of published literature. Methods A systematic literature review was conducted using MEDLINE, Embase, EconLit and Cochrane databases to identify publications (1 January 2001 to 31 December 2016) on the economic burden of bronchiectasis in adults. Results A total of 26 publications were identified that reported resource use and costs associated with management of bronchiectasis. Two US studies reported annual incremental costs of bronchiectasis versus matched controls of US5681andUS5681 and US2319 per patient. Twenty-four studies reported on hospitalization rates or duration of hospitalization for patients with bronchiectasis. Mean annual hospitalization rates per patient, reported in six studies, ranged from 0.3–1.3, while mean annual age-adjusted hospitalization rates, reported in four studies, ranged from 1.8–25.7 per 100,000 population. The average duration of hospitalization, reported in 12 studies, ranged from 2 to 17 days. Eight publications reported management costs of bronchiectasis. Total annual management costs of €3515 and €4672 per patient were reported in two Spanish studies. Two US studies reported total costs of approximately US26,000inpatientswithoutexacerbations,increasingtoUS26,000 in patients without exacerbations, increasing to US36,00–37,000 in patients with exacerbations. Similarly, a Spanish study reported higher total annual costs for patients with > 2 exacerbations per year (€7520) compared with those without exacerbations (€3892). P. aeruginosa infection increased management costs by US31,551toUS31,551 to US56,499, as reported in two US studies, with hospitalization being the main cost driver. Conclusions The current literature suggests that the economic burden of bronchiectasis in society is significant. Hospitalization costs are the major driver behind these costs, especially in patients with frequent exacerbations. However, the true economic burden of bronchiectasis is likely to be underestimated because most studies were retrospective, used ICD-9-CM coding to identify patients, and often ignored outpatient burden and cost. We present a conceptual framework to facilitate a more comprehensive assessment of the true burden of bronchiectasis for individuals, healthcare systems and society

    Economies of (Alleged) Deviance: Sex Work and the Sport Mega Event

    Get PDF
    Based on ethnographic data collected during the 2014 FIFA World Cup and 2016 Olympic Games in Rio de Janeiro, Brazil, thisarticle is interested to examine urban processes which reinvent the changing (sexual) landscape. Focusing on the way (host) citiesshape sex work both imaginatively and physically, we explore the (lived) realities of neoliberal imaginaries that shape urbanspace. Often thought to exist in the urban shadow as an absent-presence in cosmopolitan processes, we demonstrate the manner inwhich sexualized and racialized women creatively resist the political and economic trajectories of neoliberal urbanism that seek toexpropriate land and dispossess certain bodies. In the context of Rio de Janeiroβ€”as in other host citiesβ€”this is particularlyevident in the routine encounter between sexual minorities and local law enforcement. Mindful of the literature on state incursioninto social-sexual life, we remain attentive to the everyday strategies through which those deemed sexually deviant and/or victimnavigate local authorities in search of new opportunities for economic salvation in the midst of the sport mega-event

    Systematic identification of conserved motif modules in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of motif modules, groups of multiple motifs frequently occurring in DNA sequences, is one of the most important tasks necessary for annotating the human genome. Current approaches to identifying motif modules are often restricted to searches within promoter regions or rely on multiple genome alignments. However, the promoter regions only account for a limited number of locations where transcription factor binding sites can occur, and multiple genome alignments often cannot align binding sites with their true counterparts because of the short and degenerative nature of these transcription factor binding sites.</p> <p>Results</p> <p>To identify motif modules systematically, we developed a computational method for the entire non-coding regions around human genes that does not rely upon the use of multiple genome alignments. First, we selected orthologous DNA blocks approximately 1-kilobase in length based on discontiguous sequence similarity. Next, we scanned the conserved segments in these blocks using known motifs in the TRANSFAC database. Finally, a frequent pattern mining technique was applied to identify motif modules within these blocks. In total, with a false discovery rate cutoff of 0.05, we predicted 3,161,839 motif modules, 90.8% of which are supported by various forms of functional evidence. Compared with experimental data from 14 ChIP-seq experiments, on average, our methods predicted 69.6% of the ChIP-seq peaks with TFBSs of multiple TFs. Our findings also show that many motif modules have distance preference and order preference among the motifs, which further supports the functionality of these predictions.</p> <p>Conclusions</p> <p>Our work provides a large-scale prediction of motif modules in mammals, which will facilitate the understanding of gene regulation in a systematic way.</p

    Towards realistic benchmarks for multiple alignments of non-coding sequences

    Get PDF
    <p><b>Abstract</b></p> <p>Background</p> <p>With the continued development of new computational tools for multiple sequence alignment, it is necessary today to develop benchmarks that aid the selection of the most effective tools. Simulation-based benchmarks have been proposed to meet this necessity, especially for non-coding sequences. However, it is not clear if such benchmarks truly represent real sequence data from any given group of species, in terms of the difficulty of alignment tasks.</p> <p>Results</p> <p>We find that the conventional simulation approach, which relies on empirically estimated values for various parameters such as substitution rate or insertion/deletion rates, is unable to generate synthetic sequences reflecting the broad genomic variation in conservation levels. We tackle this problem with a new method for simulating non-coding sequence evolution, by relying on genome-wide distributions of evolutionary parameters rather than their averages. We then generate synthetic data sets to mimic orthologous sequences from the <it>Drosophila </it>group of species, and show that these data sets truly represent the variability observed in genomic data in terms of the difficulty of the alignment task. This allows us to make significant progress towards estimating the alignment accuracy of current tools in an absolute sense, going beyond only a relative assessment of different tools. We evaluate six widely used multiple alignment tools in the context of <it>Drosophila </it>non-coding sequences, and find the accuracy to be significantly different from previously reported values. Interestingly, the performance of most tools degrades more rapidly when there are more insertions than deletions in the data set, suggesting an asymmetric handling of insertions and deletions, even though none of the evaluated tools explicitly distinguishes these two types of events. We also examine the accuracy of two existing tools for annotating insertions versus deletions, and find their performance to be close to optimal in <it>Drosophila </it>non-coding sequences if provided with the true alignments.</p> <p>Conclusion</p> <p>We have developed a method to generate benchmarks for multiple alignments of <it>Drosophila </it>non-coding sequences, and shown it to be more realistic than traditional benchmarks. Apart from helping to select the most effective tools, these benchmarks will help practitioners of comparative genomics deal with the effects of alignment errors, by providing accurate estimates of the extent of these errors.</p

    Impact of bleeding-related complications and/or blood product transfusions on hospital costs in inpatient surgical patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inadequate surgical hemostasis may lead to transfusion and/or other bleeding-related complications. This study examines the incidence and costs of bleeding-related complications and/or blood product transfusions occurring as a consequence of surgery in various inpatient surgical cohorts.</p> <p>Methods</p> <p>A retrospective analysis was conducted using Premier's Perspectiveβ„’ hospital database. Patients who had an inpatient procedure within a specialty of interest (cardiac, vascular, non-cardiac thoracic, solid organ, general, reproductive organ, knee/hip replacement, or spinal surgery) during 2006-2007 were identified. For each specialty, the rate of bleeding-related complications (including bleeding event, intervention to control for bleeding, and blood product transfusions) was examined, and hospital costs and length of stay (LOS) were compared between surgeries with and without bleeding-related complications. Incremental costs and ratios of average total hospital costs for patients with bleeding-related complications vs. those without complications were estimated using ordinary least squares (OLS) regression, adjusting for demographics, hospital characteristics, and other baseline characteristics. Models using generalized estimating equations (GEE) were also used to measure the impact of bleeding-related complications on costs while accounting for the effects related to the clustering of patients receiving care from the same hospitals.</p> <p>Results</p> <p>A total of 103,829 cardiac, 216,199 vascular, 142,562 non-cardiac thoracic, 45,687 solid organ, 362,512 general, 384,132 reproductive organ, 246,815 knee/hip replacement, and 107,187 spinal surgeries were identified. Overall, the rate of bleeding-related complications was 29.9% and ranged from 7.5% to 47.4% for reproductive organ and cardiac, respectively. Overall, incremental LOS associated with bleeding-related complications or transfusions (unadjusted for covariates) was 6.0 days and ranged from 1.3 to 9.6 days for knee/hip replacement and non-cardiac thoracic, respectively. The incremental cost per hospitalization associated with bleeding-related complications and adjusted for covariates was highest for spinal surgery (17,279)followedbyvascular(17,279) followed by vascular (15,123), solid organ (13,210),nonβˆ’cardiacthoracic(13,210), non-cardiac thoracic (13,473), cardiac (10,279),general(10,279), general (4,354), knee/hip replacement (3,005),andreproductiveorgan(3,005), and reproductive organ (2,805).</p> <p>Conclusions</p> <p>This study characterizes the increased hospital LOS and cost associated with bleeding-related complications and/or transfusions occurring as a consequence of surgery, and supports implementation of blood-conservation strategies.</p

    progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement

    Get PDF
    Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms.We describe a new method to align two or more genomes that have undergone rearrangements due to recombination and substantial amounts of segmental gain and loss (flux). We demonstrate that the new method can accurately align regions conserved in some, but not all, of the genomes, an important case not handled by our previous work. The method uses a novel alignment objective score called a sum-of-pairs breakpoint score, which facilitates accurate detection of rearrangement breakpoints when genomes have unequal gene content. We also apply a probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which measure the quality of rearrangement breakpoint predictions and indel predictions. The new genome alignment algorithm demonstrates high accuracy in situations where genomes have undergone biologically feasible amounts of genome rearrangement, segmental gain and loss. We apply the new algorithm to a set of 23 genomes from the genera Escherichia, Shigella, and Salmonella. Analysis of whole-genome multiple alignments allows us to extend the previously defined concepts of core- and pan-genomes to include not only annotated genes, but also non-coding regions with potential regulatory roles. The 23 enterobacteria have an estimated core-genome of 2.46Mbp conserved among all taxa and a pan-genome of 15.2Mbp. We document substantial population-level variability among these organisms driven by segmental gain and loss. Interestingly, much variability lies in intergenic regions, suggesting that the Enterobacteriacae may exhibit regulatory divergence.The multiple genome alignments generated by our software provide a platform for comparative genomic and population genomic studies. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve

    The Caenorhabditis elegans Gene mfap-1 Encodes a Nuclear Protein That Affects Alternative Splicing

    Get PDF
    RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre–mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicing-related diseases. We previously isolated a Caenorhabditis elegans mutant defective in an essential gene from a genetic screen for suppressors of the rubberband Unc phenotype of unc-93(e1500) animals. This mutant contains missense mutations in two adjacent codons of the C. elegans microfibrillar-associated protein 1 gene mfap-1. mfap-1(n4564 n5214) suppresses the Unc phenotypes of different rubberband Unc mutants in a pattern similar to that of mutations in the splicing factor genes uaf-1 (the C. elegans U2AF large subunit gene) and sfa-1 (the C. elegans SF1/BBP gene). We used the endogenous gene tos-1 as a reporter for splicing and detected increased intron 1 retention and exon 3 skipping of tos-1 transcripts in mfap-1(n4564 n5214) animals. Using a yeast two-hybrid screen, we isolated splicing factors as potential MFAP-1 interactors. Our studies indicate that C. elegans mfap-1 encodes a splicing factor that can affect alternative splicing.National Natural Science Foundation (China) (Grant 30971639)United States. National Institutes of Health (Grant GM24663
    • …
    corecore