430 research outputs found
A single 9-colour flow cytometric method to characterise major leukocyte populations in the rat: validation in a model of LPS-induced pulmonary inflammation
Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking
Coarse-Graining and Renormalization Group in the Einstein Universe
The Kadanoff-Wilson renormalization group approach for a scalar
self-interacting field theor generally coupled with gravity is presented. An
average potential that monitors the fluctuations of the blocked field in
different scaling regimes is constructed in a nonflat background and explicitly
computed within the loop-expansion approximation for an Einstein universe. The
curvature turns out to be dominant in setting the crossover scale from a
double-peak and a symmetric distribution of the block variables. The evolution
of all the coupling constants generated by the blocking procedure is examined:
the renormalized trajectories agree with the standard perturbative results for
the relevant vertices near the ultraviolet fixed point, but new effective
interactions between gravity and matter are present. The flow of the conformal
coupling constant is therefore analyzed in the improved scheme and the infrared
fixed point is reached for arbitrary values of the renormalized parameters.Comment: 18 pages, REVTex, two uuencoded figures. (to appear in Phys. Rev.
D15, July) Transmission errors have been correcte
Effective action in a higher-spin background
We consider a free massless scalar field coupled to an infinite tower of
background higher-spin gauge fields via minimal coupling to the traceless
conserved currents. The set of Abelian gauge transformations is deformed to the
non-Abelian group of unitary operators acting on the scalar field. The gauge
invariant effective action is computed perturbatively in the external fields.
The structure of the various (divergent or finite) terms is determined. In
particular, the quadratic part of the logarithmically divergent (or of the
finite) term is expressed in terms of curvatures and related to conformal
higher-spin gravity. The generalized higher-spin Weyl anomalies are also
determined. The relation with the theory of interacting higher-spin gauge
fields on anti de Sitter spacetime via the holographic correspondence is
discussed.Comment: 40 pages, Some errors and typos corrected, Version published in JHE
Observational constraints on Rastall's cosmology
Rastall's theory is a modification of General Relativity, based on the
non-conservation of the stress-energy tensor. The latter is encoded in a
parameter such that restores the usual law. We test Rastall's theory in cosmology, on a flat
Robertson-Walker metric, investigating a two-fluid model and using the type Ia
supernovae Constitution dataset. One of the fluids is pressureless and obeys
the usual conservation law, whereas the other is described by an equation of
state , with constant. The Bayesian analysis of the
Constitution set does not strictly constrain the parameter and prefers
values of close to -1. We then address the evolution of small
perturbations and show that they are dramatically unstable if and
, i.e. General Relativity is the favored configuration. The only
alternative is , for which the dynamics becomes independent from
.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial
modifications performed, main conclusions change
Scalar Quantum Field Theory in Disordered Media
A free massive scalar field in inhomogeneous random media is investigated.
The coefficients of the Klein-Gordon equation are taken to be random functions
of the spatial coordinates. The case of an annealed-like disordered medium,
modeled by centered stationary and Gaussian processes, is analyzed. After
performing the averages over the random functions, we obtain the two-point
causal Green's function of the model up to one-loop. The disordered scalar
quantum field theory becomes qualitatively similar to a
self-interacting theory with a frequency-dependent coupling
Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations
Models of cosmic inflation suggest that our universe underwent an early phase
of accelerated expansion, driven by the dynamics of one or more scalar fields.
Inflationary models make specific, quantitative predictions for several
observable quantities, including particular patterns of temperature anistropies
in the cosmic microwave background radiation. Realistic models of high-energy
physics include many scalar fields at high energies. Moreover, we may expect
these fields to have nonminimal couplings to the spacetime curvature. Such
couplings are quite generic, arising as renormalization counterterms when
quantizing scalar fields in curved spacetime. In this chapter I review recent
research on a general class of multifield inflationary models with nonminimal
couplings. Models in this class exhibit a strong attractor behavior: across a
wide range of couplings and initial conditions, the fields evolve along a
single-field trajectory for most of inflation. Across large regions of phase
space and parameter space, therefore, models in this general class yield robust
predictions for observable quantities that fall squarely within the "sweet
spot" of recent observations.Comment: 17pp, 2 figs. References added to match the published version.
Published in {\it At the Frontier of Spacetime: Scalar-Tensor Theory, Bell's
Inequality, Mach's Principle, Exotic Smoothness}, ed. T. Asselmeyer-Maluga
(Springer, 2016), pp. 41-57, in honor of Carl Brans's 80th birthda
Loop Quantum Gravity and the The Planck Regime of Cosmology
The very early universe provides the best arena we currently have to test
quantum gravity theories. The success of the inflationary paradigm in
accounting for the observed inhomogeneities in the cosmic microwave background
already illustrates this point to a certain extent because the paradigm is
based on quantum field theory on the curved cosmological space-times. However,
this analysis excludes the Planck era because the background space-time
satisfies Einstein's equations all the way back to the big bang singularity.
Using techniques from loop quantum gravity, the paradigm has now been extended
to a self-consistent theory from the Planck regime to the onset of inflation,
covering some 11 orders of magnitude in curvature. In addition, for a narrow
window of initial conditions, there are departures from the standard paradigm,
with novel effects, such as a modification of the consistency relation
involving the scalar and tensor power spectra and a new source for
non-Gaussianities. Thus, the genesis of the large scale structure of the
universe can be traced back to quantum gravity fluctuations \emph{in the Planck
regime}. This report provides a bird's eye view of these developments for the
general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and
Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings
to be published by Edition Open Access. Summarizes results that appeared in
journal articles [2-13
Peroxisome Proliferator-Activated Receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes
Background: PPARs exhibit anti-inflammatory capacities and are potential modulators of the inflammatory response. We hypothesized that their expression and/or function may be altered in cystic fibrosis (CF), a disorder characterized by an excessive host inflammatory response.
Methods: PPARα, β and γ mRNA levels were measured in peripheral blood cells of CF patients and healthy subjects via RT-PCR. PPARα protein expression and subcellular localization was determined via western blot and immunofluorescence, respectively. The activity of PPARα was analyzed by gel shift assay.
Results: In lymphocytes, the expression of PPARα mRNA, but not of PPARβ, was reduced (-37%; p < 0.002) in CF patients compared with healthy persons and was therefore further analyzed. A similar reduction of PPARα was observed at protein level (-26%; p < 0.05). The transcription factor was mainly expressed in the cytosol of lymphocytes, with low expression in the nucleus. Moreover, DNA binding activity of the transcription factor was 36% less in lymphocytes of patients (p < 0.01). For PPARα and PPARβ mRNA expression in monocytes and neutrophils, no significant differences were observed between CF patients and healthy persons. In all cells, PPARγ mRNA levels were below the detection limit.
Conclusion: Lymphocytes are important regulators of the inflammatory response by releasing cytokines and antibodies. The diminished lymphocytic expression and activity of PPARα may therefore contribute to the inflammatory processes that are observed in CF
- …
