23 research outputs found

    Fires can benefit plants by disrupting antagonistic interactions

    Get PDF
    Fire has a key role in the ecology and evolution of many ecosystems, yet its effects on plant–insect interactions are poorly understood. Because interacting species are likely to respond to fire differently, disruptions of the interactions are expected. We hypothesized that plants that regenerate after fire can benefit through the disruption of their antagonistic interactions. We expected stronger effects on interactions with specialist predators than with generalists. We studied two interactions between two Mediterranean plants (Ulex parviflorus, Asphodelus ramosus) and their specialist seed predators after large wildfires. In A. ramosus we also studied the generalist herbivores. We sampled the interactions in burned and adjacent unburned areas during 2 years by estimating seed predation, number of herbivores and fruit set. To assess the effect of the distance to unburned vegetation we sampled plots at two distance classes from the fire perimeter. Even 3 years after the fires, Ulex plants experienced lower seed damage by specialists in burned sites. The presence of herbivores on Asphodelus decreased in burned locations, and the variability in their presence was significantly related to fruit set. Generalist herbivores were unaffected. We show that plants can benefit from fire through the disruption of their antagonistic interactions with specialist seed predators for at least a few years. In environments with a long fire history, this effect might be one additional mechanism underlying the success of fire-adapted plants

    Grandisol as an attractant for the sugar beet pest Bothynoderes affinis and data on other Lixinae species

    No full text
    As a result of field tests in Bulgaria and Hungary, cis-2-isopropenyl-l-methylcyclobutane ethanol (racemic grandisol) is reported for the first time as an attractant for Bothynoderes affinis (Schrank) (Coleoptera: Curculionidae, Lixinae), a member of the pest weevil complex of sugar beet. Dose-response experiments in the field using Csalomon TAL (modified pitfall) traps (Plant Protection Institute, CAR HAS, Budapest, Hungary) showed that catches of B. affinis adults increased with increasing attractant dose. In a subsequent experiment studying the effect of trap color (white, blue, yellow, fluorescent yellow, and transparent) all traps with the lure caught more than non-baited control traps, and the highest number of adults was recorded in transparent and yellow baited traps. Trap color had a significant effect on the number of B. affinis females captured. Transparent TAL traps baited with 1-10 mg grandisol applied on rubber dispensers are recommended for the detection and monitoring of B. affinis. In addition to the target species, 17 other Lixinae species were captured during the field experiments, demonstrating for the first time the possible role of grandisol in the chemical communication systems of some of these species. A second locality of Lixus punctiventris Boheman (Lixinae, Lixini) in Bulgaria is reported. TAL traps baited with grandisol might be a useful tool for surveying Lixinae diversity in different biotopes
    corecore