166 research outputs found
Inside-out planet formation: onset and oligarchic growth of the vulcans
Stars and planetary system
Planetary systems in a star cluster I: the Solar system scenario
Stars and planetary system
Oort cloud Ecology: II. the chronology of the formation of the Oort cloud
Stars and planetary system
Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity
In this work, we have considered the entropy-corrected new agegraphic dark
energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have
discussed the correspondence between ECNADE and other dark energy models such
as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear
electrodynamics field and hessence dark energy in the context of
Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of
the scalar field theory which describe the ECNADE.Comment: 12 page
Deep-learning enhancement of large scale numerical simulations
Computational astrophysic
Modern temporal network theory: A colloquium
The power of any kind of network approach lies in the ability to simplify a
complex system so that one can better understand its function as a whole.
Sometimes it is beneficial, however, to include more information than in a
simple graph of only nodes and links. Adding information about times of
interactions can make predictions and mechanistic understanding more accurate.
The drawback, however, is that there are not so many methods available, partly
because temporal networks is a relatively young field, partly because it more
difficult to develop such methods compared to for static networks. In this
colloquium, we review the methods to analyze and model temporal networks and
processes taking place on them, focusing mainly on the last three years. This
includes the spreading of infectious disease, opinions, rumors, in social
networks; information packets in computer networks; various types of signaling
in biology, and more. We also discuss future directions.Comment: Final accepted versio
A MODEST review
We present an account of the state of the art in the fields explored by the
research community invested in 'Modeling and Observing DEnse STellar systems'.
For this purpose, we take as a basis the activities of the MODEST-17
conference, which was held at Charles University, Prague, in September 2017.
Reviewed topics include recent advances in fundamental stellar dynamics,
numerical methods for the solution of the gravitational N-body problem,
formation and evolution of young and old star clusters and galactic nuclei,
their elusive stellar populations, planetary systems, and exotic compact
objects, with timely attention to black holes of different classes of mass and
their role as sources of gravitational waves.
Such a breadth of topics reflects the growing role played by collisional
stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next
decade, many revolutionary instruments will enable the derivation of positions
and velocities of individual stars in the Milky Way and its satellites and will
detect signals from a range of astrophysical sources in different portions of
the electromagnetic and gravitational spectrum, with an unprecedented
sensitivity. On the one hand, this wealth of data will allow us to address a
number of long-standing open questions in star cluster studies; on the other
hand, many unexpected properties of these systems will come to light,
stimulating further progress of our understanding of their formation and
evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and
Cosmology'. We are much grateful to the organisers of the MODEST-17
conference (Charles University, Prague, September 2017). We acknowledge the
input provided by all MODEST-17 participants, and, more generally, by the
members of the MODEST communit
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.
Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.
Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.
Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic.
Funding: Bill & Melinda Gates Foundation
Planetary systems in star clusters: the dynamical evolution and survival
Computational astrophysic
Fast and credible likelihood-free cosmology with truncated marginal neural ratio estimation
Sampling-based inference techniques are central to modern cosmological data analysis; these methods, however, scale poorly with dimensionality and typically require approximate or intractable likelihoods. In this paper we describe how Truncated Marginal Neural Ratio Estimation (tmnre) (a new approach in so-called simulation-based inference) naturally evades these issues, improving the (i) efficiency, (ii) scalability, and (iii) trustworthiness of the inference. Using measurements of the Cosmic Microwave Background (CMB), we show that tmnre can achieve converged posteriors using orders of magnitude fewer simulator calls than conventional Markov Chain Monte Carlo (mcmc) methods. Remarkably, in these examples the required number of samples is effectively independent of the number of nuisance parameters. In addition, a property called local amortization allows the performance of rigorous statistical consistency checks that are not accessible to sampling-based methods. tmnre promises to become a powerful tool for cosmological data analysis, particularly in the context of extended cosmologies, where the timescale required for conventional sampling-based inference methods to converge can greatly exceed that of simple cosmological models such as ΛCDM. To perform these computations, we use an implementation of tmnre via the open-source code swyft.[swyft is available at https://github.com/undark-lab/swyft. Demonstration on cosmological simulators used in this paper is available at https://github.com/a-e-cole/swyft-CMB.
- …