929 research outputs found

    Momentum Distributions of Particles from Three--Body Halo Fragmentation: Final State Interactions

    Get PDF
    Momentum distributions of particles from nuclear break-up of fast three-body halos are calculated consistently, and applied to 11^{11}Li. The same two-body interactions between the three particles are used to calculate the ground state structure and the final state of the reaction processes. We reproduce the available momentum distributions from 11^{11}Li fragmentation, together with the size and energy of 11^{11}Li, with a neutron-core relative state containing a pp-state admixture of 20\%-30\%. The available fragmentation data strongly suggest an ss-state in 10^{10}Li at about 50 keV, and indicate a pp-state around 500 keV.Comment: 11 pages (RevTeX), 3 Postscript figures (uuencoded postscript file attached at the end of the LaTeX file). To be published in Phys. Rev.

    Long range absorption in the scattering of 6He on 208Pb and 197Au at 27 MeV

    Get PDF
    Quasi-elastic scattering of 6He at E_lab=27 MeV from 197Au has been measured in the angular range of 6-72 degrees in the laboratory system employing LEDA and LAMP detection systems. These data, along with previously analysed data of 6He + 208Pb at the same energy, are analyzed using Optical Model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in 6He induced reactions.Comment: 10 pages, 10 figures, minor corrections. To appear in Nucl. Phys.

    Changing of flight phenology and ecotype expansion of the European corn borer (Ostrinia nubilalis Hbn.) in Hungary Part

    Get PDF
    The studies aimed to acquire the widest possible information on the annual flight in Hungary of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). The investigations used biomathematical (Part 1) and graphical (Part 2) evaluation to document changes in the individual population number.The study was conducted in Hungary using ECB moth capture records from the Plant Protection Information System black light trap system (1991–2004). We have drawn conclusions on the appearance of annual flights and the tendency of alterations in flight direction by means of light trap results in four different areas in Hungary. We calculated the flight peak quotients, the individual population numbers of the second flight peak, the distinctions of individual numbers of two flight peaks in this part.As previously published, alterations in flight direction of ECB flights began at different times in Hungary. In the current study, a gradual disappearance of the univoltine ecotype and gradual appearance of the bivoltine ecotype ECB in Hungary is confirmed by the data obtained between 1991–2004. Flight peak quotients and data concerning the second flight peak have confirmed change this process, too: the appearance of a second flight peak in Northwestern Hungary from 1995–1996 (FP = 1.27), the more significant appearance of flights in August in Western Hungary (FP = 1.05) and Northeastern Hungary (FP = 1.45), and a three and four times more individual number of the second flight peak in Southeastern Hungary (FP = 3.44). Flight peak quotients, individual population numbers of the second flight peak, the tendency towards a difference in population number of the two peaks, and size of increase of these values demonstrates the southeastern-northwestern presence of the bivoltine ecotype in Hungary

    The influence of strong magnetic field on photon-neutrino reactions

    Full text link
    The two-photon two-neutrino interaction induced by magnetic field is investigated. In particular the processes γγννˉ\gamma \gamma \to \nu \bar \nu and γγννˉ\gamma \to \gamma \nu \bar \nu are studied in the presence of strong magnetic field. An effective Lagrangian and partial amplitudes of the processes are presented. Neutrino emissivities due to the reactions γγννˉ\gamma \gamma \to \nu \bar \nu and γγννˉ\gamma \to \gamma \nu \bar \nu are calculated taking into account of the photon dispersion and large radiative corrections. A comparison of the results obtained with previous estimations and another inducing mechanisms of the processes under consideration is made.Comment: 16 pages, LATEX, 3 EPS figures, based on the talk presented at XXXI ITEP Winter School of Physics, Moscow, Russia, February 18 - 26, 200

    Spin-dependent effective interactions for halo nuclei

    Get PDF
    We discuss the spin-dependence of the effective two-body interactions appropriate for three-body computations. The only reasonable choice seems to be the fine and hyperfine interactions known for atomic electrons interacting with the nucleus. One exception is the nucleon-nucleon interaction imposing a different type of symmetry. We use the two-neutron halo nucleus 11Li as illustration. We demonstrate that models with the wrong spin-dependence are basically without predictive power. The Pauli forbidden core and valence states must be consistently treated.Comment: TeX file, 6 pages, 3 postscript figure

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Magnetic Reconnection in Extreme Astrophysical Environments

    Full text link
    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfv\'en transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic reconnection). Article is based on an invited review talk at the Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA; February 8-12, 2010). 30 pages, no figure

    Breakup reaction models for two- and three-cluster projectiles

    Full text link
    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroedinger equation is solved with the projectile continuum approximated by square-integrable states. These models are first illustrated by applications to two-cluster projectiles for studies of nuclei far from stability and of reactions useful in astrophysics. Recent extensions to three-cluster projectiles, like two-neutron halo nuclei, are then presented and discussed. We end this review with some views of the future in breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be published as a volume of "Lecture Notes in Physics" (Springer

    Vortex dynamics and states of artificially layered superconducting films with correlated defects

    Full text link
    Linear resistances and IVIV-characteristics have been measured over a wide range in the parameter space of the mixed phase of multilayered a-TaGe/Ge films. Three films with varying interlayer coupling and correlated defects oriented at an angle 25\approx 25 from the film normal were investigated. Experimental data were analyzed within vortex glass models and a second order phase transition from a resistive vortex liquid to a pinned glass phase. Various vortex phases including changes from three to two dimensional behavior depending on anisotropy have been identified. Careful analysis of IVIV-characteristics in the glass phases revealed a distinctive TT and HH-dependence of the glass exponent μ\mu. The vortex dynamics in the Bose-glass phase does not follow the predicted behavior for excitations of vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table

    TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova

    Full text link
    Electrons and electron neutrinos in the inner core of the core-collapse supernova are highly degenerate and therefore numerous during a few seconds of explosion. In contrast, leptons of other flavors are non-degenerate and therefore relatively scarce. This is due to lepton flavor conservation. If this conservation law is broken by some non-standard interactions, electron neutrinos are converted to muon and tau-neutrinos, and electrons - to muons. This affects the supernova dynamics and the supernova neutrino signal. We consider lepton flavor violating interactions mediated by scalar bileptons, i.e. heavy scalars with lepton number 2. It is shown that in case of TeV-mass bileptons the electron fermi gas is equilibrated with non-electron species inside the inner supernova core at a time-scale of order of (1-100) ms. In particular, a scalar triplet which generates neutrino masses through the see-saw type II mechanism is considered. It is found that supernova core is sensitive to yet unprobed values of masses and couplings of the triplet.Comment: accepted to Eur.Phys.J.
    corecore