1,809 research outputs found

    Efficient photon counting and single-photon generation using resonant nonlinear optics

    Full text link
    The behavior of an atomic double lambda system in the presence of a strong off-resonant classical field and a few-photon resonant quantum field is examined. It is shown that the system possesses properties that allow a single-photon state to be distilled from a multi-photon input wave packet. In addition, the system is also capable of functioning as an efficient photodetector discriminating between one- and two-photon wave packets with arbitrarily high efficiency.Comment: 4 pages, 2 figure

    An approach to solve Slavnov-Taylor identities in nonsupersymmetric non-Abelian gauge theories

    Get PDF
    We present a way to solve Slavnov--Taylor identities in a general nonsupersymmetric theory. The solution can be parametrized by a limited number of functions of spacetime coordinates, so that all the effective fields are dressed by these functions via integral convolution. The solution restricts the ghost part of the effective action and gives predictions for the physical part of the effective action.Comment: revised version, section 3 is enlarged, 24 pages, Latex2e, no figures, version accepted by Phys. Rev.

    Universality in Four-Boson Systems

    Full text link
    We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems, October 2011, Erice, Sicily, Ital

    Dimer-atom-atom recombination in the universal four-boson system

    Full text link
    The dimer-atom-atom recombination process in the system of four identical bosons with resonant interactions is studied. The description uses the exact Alt, Grassberger and Sandhas equations for the four-particle transition operators that are solved in the momentum-space framework. The dimer-dimer and atom-trimer channel contributions to the ultracold dimer-atom-atom recombination rate are calculated. The dimer-atom-atom recombination rate greatly exceeds the three-atom recombination rate.Comment: 10 pages, 3 figures, accepted for publication in Few-Body System

    On the ground state energy scaling in quasi-rung-dimerized spin ladders

    Full text link
    On the basis of periodic boundary conditions we study perturbatively a large N asymptotics (N is the number of rungs) for the ground state energy density and gas parameter of a spin ladder with slightly destroyed rung-dimerization. Exactly rung-dimerized spin ladder is treated as the reference model. Explicit perturbative formulas are obtained for three special classes of spin ladders.Comment: 4 page

    Intramolecular activity regulation of adhesion GPCRs in light of recent structural and evolutionary information

    Get PDF
    The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes

    Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets

    Full text link
    We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-photon wave packets. We present analytic expressions for the two-photon wave function and show that soliton-type quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the modes. Potential applications including quantum information processing are discussed.Comment: 7 pages, 3 figure

    Photon Spectrum Produced by the Late Decay of a Cosmic Neutrino Background

    Get PDF
    We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.Comment: RevTex, 14 pages, 3 figures; minor changes, references added. To appear in Phys. Rev.

    Pseudogap and Conduction Dimensionalities in High-T_c Superconductors

    Full text link
    The nature of normal state charge-carriers' dynamics and the transition in conduction and gap dimensionalities between 2D and 3D for YBa_2 Cu_3 O_{7-delta} and Bi_2 Sr_2 Ca_{1-x} Y_x Cu_2 O_8 high-T_c superconductors were described by computing and fitting the resistivity curves, rho(T,delta,x). These were carried out by utilizing the 2D and 3D Fermi liquid (FL) and ionization energy (E_I) based resistivity models coupled with charge-spin (CS) separation based t-J model [Phys. Rev. B 64, 104516 (2001)]. rho(T,delta,x) curves of Y123 and Bi2212 samples indicate the beginning of the transition of conduction and gap from 2D to 3D with reduction in oxygen content (7-delta) and Ca^{2+} (1-x) as such, c-axis pseudogap could be a different phenomenon from superconductor and spin gaps. These models also indicate that the recent MgB_2 superconductor is at least not Y123 or Bi2212 type.Comment: To be published in Physica

    Supersymmetric Nambu−-Jona-Lasinio Model on N=1/2{\cal N}=1/2 four-dimensional Non(anti)commutative Superspace

    Full text link
    We construct the Lagrangian of the N=1{\cal N}=1 four-dimensional generalized supersymmetric Nambu−-Jona-Lasinio (SNJL) model, which has N=1/2{\cal N}=1/2 supersymmetry (SUSY) on non(anti)commutative superspace. A special attention is paid to the examination on the nonperturbative quantum dynamics: The phenomenon of dynamical-symmetry-breaking/mass-generation on the deformed superspace is investigated. The model Lagrangian and the method of SUSY auxiliary fields of composites are examined in terms of component fields. We derive the effective action, examine it, and solve the gap equation for self-consistent mass parameters.Comment: 16 pages, TeX mistakes corrected, accepted for publication in JHEP, 25 Jan. 200
    • 

    corecore