101 research outputs found

    Constraining the variation of the coupling constants with big bang nucleosynthesis

    Get PDF
    We consider the possibility of the coupling constants of the SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1) gauge interactions at the time of big bang nucleosynthesis having taken different values from what we measure at present, and investigate the allowed difference requiring the shift in the coupling constants not violate the successful calculation of the primordial abundances of the light elements. We vary gauge couplings and Yukawa couplings (fermion masses) using a model in which their relative variations are governed by a single scalar field, dilaton, as found in string theory. The results include a limit on the fine structure constant 6.0×104<ΔαEM/αEM<1.5×104-6.0\times10^{-4}<\Delta\alpha_{EM}/\alpha_{EM}<1.5\times10^{-4}, which is two orders stricter than the limit obtained by considering the variation of αEM\alpha_{EM} alone.Comment: 7 page

    Photon Spectrum Produced by the Late Decay of a Cosmic Neutrino Background

    Get PDF
    We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.Comment: RevTex, 14 pages, 3 figures; minor changes, references added. To appear in Phys. Rev.

    Entropy Crisis, Ideal Glass Transition and Polymer Melting: Exact Solution on a Husimi Cactus

    Full text link
    We introduce an extension of the lattice model of melting of semiflexible polymers originally proposed by Flory. Along with a bending penalty, present in the original model and involving three sites of the lattice, we introduce an interaction energy that corresponds to the presence of a pair of parallel bonds and a second interaction energy associated with the presence of a hairpin turn. Both these new terms represent four-site interactions. The model is solved exactly on a Husimi cactus, which approximates a square lattice. We study the phase diagram of the system as a function of the energies. For a proper choice of the interaction energies, the model exhibits a first-order melting transition between a liquid and a crystalline phase. The continuation of the liquid phase below this temperature gives rise to a supercooled liquid, which turns continuously into a new low-temperature phase, called metastable liquid. This liquid-liquid transition seems to have some features that are characteristic of the critical transition predicted by the mode-coupling theory.Comment: To be published in Physical Review E, 68 (2) (2003

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    The Physics of the B Factories

    Get PDF
    corecore