39 research outputs found

    Ripretinib intrapatient dose escalation after disease progression provides clinically meaningful outcomes in advanced gastrointestinal stromal tumour

    Get PDF
    Purpose: Ripretinib is a switch-control tyrosine kinase inhibitor that broadly inhibits KIT and platelet-derived growth factor receptor a kinase signalling. Ripretinib showed preliminary efficacy in patients with advanced gastrointestinal stromal tumour (GIST) in a phase I study across a range of doses. Results were confirmed in the phase III INVICTUS study, and ripretinib 150 mg once daily (QD) was subsequently approved as a >fourth-line therapy. Here, we report the phase I study results of intrapatient dose escalation (IPDE) in patients with GIST treated across second, third and later lines of therapy. Methods: Patients with advanced GIST who experienced disease progression (PD) at ripretinib 150 mg QD could dose escalate to 150 mg twice daily (BID). Progression-free survival (PFS) 1 was calculated from the date of the first dose of ripretinib 150 mg QD to PD (as per Response Evaluation Criteria in Solid Tumours 1.1); PFS2 was from the date of IPDE (150 mg BID) to PD or death. Treatment-emergent adverse events (TEAEs) were summarised by dosing periods and compared descriptively. Results: Of 142 patients with GIST receiving ripretinib 150 mg QD, 67 underwent IPDE. IPDE provided benefit across all lines of therapy; the median PFS2 was 5.6, 3.3 and 4.6 months for patients on second-, third-and >fourth-line therapy, respectively. A partial metabolic response after IPDE was demonstrated in 13 of 37 patients with available positron emission tomography scans. TEAEs reported at both doses were similar. Conclusion: Ripretinib IPDE after PD provided continued clinical benefit in advanced GIST across second, third and later lines of therapy with a similar safety profile to that observed with the QD regimen. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Experimentele farmacotherapi

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    HlyC, the Internal Protein Acyltransferase That Activates Hemolysin Toxin: Role of Conserved Histidine, Serine, and Cysteine Residues in Enzymatic Activity as Probed by Chemical Modification and Site-Directed Mutagenesis

    No full text
    HlyC is an internal protein acyltransferase that activates hemolysin, a toxic protein produced by pathogenic Escherichia coli. Acyl-acyl carrier protein (ACP) is the essential acyl donor. Separately subcloned, expressed, and purified prohemolysin A (proHlyA), HlyC, and [1-14C]myristoyl-ACP have been used to study the conversion of proHlyA to HlyA [Trent, M. S., Worsham, L. M., and Emst-Fonberg, M. L. (1998) Biochemistry 37, 4644-4655]. HlyC and hemolysin belong to a family of at least 13 toxins produced by Gram-negative bacteria. The homologous acyltransferases of the family show a number of conserved residues that are possible candidates for participation in acyl transfer. Specific chemical reagents and site-directed mutagenesis showed that neither the single conserved cysteine nor the three conserved serine residues were required for enzyme activity. Treatment with the reversible histidine-modifying diethyl pyrocarbonate (DEPC) inhibited acyltransferase activity, and acyltransferase activity was restored following hydroxylamine treatment. The substrate myristoyl-ACP protected HlyC from DEPC inhibition. These findings and spectral absorbance changes suggested that histidine, particularly a histidine proximal to the substrate binding site, was essential for enzyme activity. Site-directed mutageneses of the single conserved histidine residue, His23, to alanine, cysteine, or serine resulted in each instance in complete inactivation of the enzyme

    HlyC, the Internal Protein Acyltransferase That Activates Hemolysin Toxin: Roles of Various Conserved Residues in Enzymatic Activity as Probed by Site-Directed Mutagenesis

    No full text
    Hemolysin, a toxic protein produced by pathogenic Escherichia coli, is one of a family of homologous toxins and toxin-processing proteins produced by Gram-negative bacteria. HlyC, an internal protein acyltransferase, converts it from nontoxic prohemolysin to toxic hemolysin. Acyl-acyl carrier protein is the essential acyl donor. The acyltransferase reaction progresses through formation of a binary complex between acyl-ACP and HlyC to a reactive acyl-HlyC intermediate [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1998) Biochemistry 37, 4644-4655]. The homologous acyltransferases of the family have a number of conserved amino acid residues that may be catalytically important. Experiments to illuminate the reaction mechanism were done. The formation of an acyl-enzyme intermediate suggested that the reaction likely proceeded through two partial reactions. The reversibility of the first partial reaction was shown by using separately subcloned, purified, and expressed substrates and enzyme. The effects of single site-directed mutations of conserved residues of HlyC on different portions of reaction progress (binary complex formation, acyl-enzyme formation, and enzyme activity, including kinetic parameters) were determined. Mutations of His23, the only residue essential for activity, formed normal binary complexes but were unable to form acyl-HlyC. The same was seen with S20A, a mutant with greatly impaired activity. Mutation of two conserved tyrosines separately to glycines results in greatly impaired binary complex and acyl-HlyC formation, but mutation of those residues to phenylalanines restored behavior to wild- type

    HlyC, the Internal Protein Acyltransferase That Activates Hemolysin Toxin: The Role of Conserved Tyrosine and Arginine Residues in Enzymatic Activity as Probed by Chemical Modification and Site-Directed Mutagenesis

    No full text
    Internal fatty acylation of proteins is a recognized means of modifying biological behavior. Escherichia coli hemolysin A (HlyA), a toxic protein, is transcribed as a nontoxic protein and made toxic by internal acylation of two lysine residue ε-amino groups; HlyC catalyzes the acyl transfer from acyl- acyl carrier protein (ACP), the obligate acyl donor. Conserved residues among the respective homologous C proteins that activate 13 different RTX (repeats in toxin) toxins of which HlyA is the prototype likely include some residues that are important in catalysis. Possible roles of two conserved tyrosines and two conserved arginines were investigated by noting the effects of chemical modifiers and site-directed mutagenesis. TNM modification of HlyC at pH 8.0 led to extensive inhibition that was prevented by the presence of the substrate myristoyl-ACP but not by the product, ACPSH. NAI had no effect. Y70G and Y150G greatly diminished enzyme activity, whereas mutations Y70F and Y150F exhibited wild-type activity. Modification of arginine residues with PG markedly lowered acyltransferase activity with moderate protection by both myristoyl-ACP and ACPSH. Under optimum conditions, four separate mutations of the two conserved arginine residues (R24A, R24K, R87A, and R87K) had little effect on acyltransferase activity

    The Biochemistry of Hemolysin Toxin Activation: Characterization of HlyC, an Internal Protein Acyltransferase

    No full text
    Hemolysin toxin produced and secreted by pathogenic Escherichia coli is one of a family of cytolytic, structurally homologous protein toxins known as RTX (repeats in toxin) toxins. RTX toxins are products of a gene cluster, CABD. The A gene product, nontoxic hemolysin (proHlyA), is made toxic by posttranslational fatty acylation of two internal lysine residues. HlyC, the C gene product, is essential for acylation, and acyl-acyl carrier protein (ACP) is the acyl donor. HlyB and HlyD are involved in secretion of the toxin. ProHlyA and HlyC were separately subcloned, expressed, and purified, and acyl-ACPs with diverse radioactive acyl groups were synthesized. With these proteins, the conversion of proHlyA to HlyA by acyl transfer was assayed. Acyl-ACP was the obligate acyl donor. Acyl transfer was catalyzed by HlyC monomer, and an acyl-enzyme intermediate was shown. Reaction was inhibited by ACPSH but not by fatty acid or fatty-acyl CoA. K(m) and V(max) for HlyA were 0.94 μM and 7.5 pmol of acyl group transferred/min, respectively; K(m) and V(max) for myristoyl-ACP were 0.48 μM and 6.9 pmol/min. The kinetic parameters of different acyl-ACPs resembled a competitive inhibition as acyl group carbon chain length increased; K(m)\u27s increased while V(max)\u27s remained unchanged. The different kinetic efficacies in the acyltransferase reaction of the ACPs with different acyl groups contrasted notably with the lytic powers of the corresponding acyl-toxins that they generated

    Insights Into the Catalytic Mechanism of HlyC, the Internal Protein Acyltransferase That Activates Escherichia Coli Hemolysin Toxin

    No full text
    Hemolysin, a toxic protein secreted by pathogenic Escherichia coli, is converted from nontoxic prohemolysin, proHlyA, to toxic hemolysin, HlyA, by an internal protein acyltransferase, HlyC. Acylacyl carrier protein (ACP) is the essential acyl donor. The acyltransferase reaction proceeds through two partial reactions and entails formation of a reactive acyl- HlyC intermediate [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1999) Biochemistry 38, 9541-9548]. The ping pong kinetic mechanism implied by these findings was validated using two different acyl-ACP substrates, thus verifying the independence of the previously demonstrated two partial reactions. Assessments of the stability of the acyl-HlyC intermediate revealed an increased stability at pH 8.6 compared to more acidic pHs. Mutations of a single conserved histidine residue essential for catalysis gave minimal activity when substituted with a tyrosine residue and no activity with a lysine residue. Unlike numerous other His23 mutants, however, the H23K enzyme showed significant acyl-HlyC formation although it was unable to transfer the acyl group from the proposed amide bond intermediate to proHlyA. These findings are compatible with transient formation of acyl-His23 during the course of HlyC catalysis. The effects of several other single site-directed mutations of conserved residues of HlyC on different portions of the reaction progress were examined using a 39 500 kDa fragment of proHlyA which was a more effective substrate than intact proHlyA

    Amino Acid Residues of Escherichia Coli Acyl Carrier Protein Involved in Heterologous Protein Interactions

    No full text
    Acyl carrier protein (ACP) is a small, highly conserved protein with an essential role in a myriad of reactions throughout lipid metabolism in plants and bacteria where it interacts with a remarkable diversity of proteins. The nature of the proper recognition and precise alignment between the protein moieties of ACP and its many interactive proteins is not understood. Residues conserved among ACPs from numerous plants and bacteria were considered as possibly being crucial to ACP\u27s function, including protein-protein interaction, and a method of identifying amino acid residue clusters of high hydrophobicity on ACP\u27s surface was used to estimate residues possibly involved in specific ACP-protein interactions. On the basis of this information, single-site mutation analysis of multiple residues, one at a time, of ACP was used to probe the identities of potential contact residues of ACPSH or acyl-ACP involved in specific interactions with selected enzymes. The roles of particular ACP residues were more precisely defined by site-directed fluorescence analyses of various myristoyl-mutant-ACPs upon specific interaction with the Escherichia coli hemolysin-activating acyltransferase, HlyC. This was done by selectively labeling each mutated site, one at a time, with an environmentally sensitive fluoroprobe and observing its fluorescence behavior in the absence and presence of HlyC. Consequently, a picture of the portion of ACP involved in selected macromolecular interaction has emerged
    corecore