1,299 research outputs found

    1-Methylcyclopropene treatment efficacy in preventing ethylene perception in banana fruit and grevillea and waxflower flowers

    Get PDF
    Premature ripening and/or senescence and abscission induced by exposure to ethylene are significant postharvest problems. Banana fruit and grevillea and Geraldton waxflower flowers are among affected commodities. Treatment with 1-methylcyclopropene gas or silver thiosulfate liquid can be used to prevent ethylene perception and response. Treatment of banana fruit with 10 nL 1-methylcyclopropene/L for 12 h at 20˚C afforded protection against subsequent serial treatments over 13 days of subsets with 100 L ethylene/L for 24 h at 20˚C. Protection of Grevillea ‘Sylvia’ inflorescences was effective only for 2 days. Thereafter, fruit and inflorescences regained sensitivity to ethylene. In contrast, neither banana fruit nor grevillea inflorescences treated with 10 nL 1-methylcyclopropene/L for 12 h at 2˚C were protected against ethylene. 1-Methylcyclopropene binding to ethylene receptors was apparently not achieved at the lower temperature. Increasing the 1-methylcyclopropene concentration to 100 nL/L, applied at 2.5˚C to banana fruit, achieved protection against ethylene. Waxflower sprigs treated with 10 nL 1-methylcyclopropene/L for 12 h at 2 or 20˚C regained full sensitivity to ethylene after about 2 and 4 days, respectively. In contrast, pulsing waxflower with 0.5 mmol Ag+/L as silver thiosulfate for 12 h at 2 or 20˚C afforded protection against ethylene for the 10 days duration of the experiment

    Experimentally realizable characterizations of continuous variable Gaussian states

    Full text link
    Measures of entanglement, fidelity and purity are basic yardsticks in quantum information processing. We propose how to implement these measures using linear devices and homodyne detectors for continuous variable Gaussian states. In particular, the test of entanglement becomes simple with some prior knowledge which is relevant to current experiments.Comment: 4 pages, This paper supersedes quant-ph/020315

    Neutrinos in Non-linear Structure Formation - The Effect on Halo Properties

    Full text link
    We use N-body simulations to find the effect of neutrino masses on halo properties, and investigate how the density profiles of both the neutrino and the dark matter components change as a function of the neutrino mass. We compare our neutrino density profiles with results from the N-one-body method and find good agreement. We also show and explain why the Tremaine-Gunn bound for the neutrinos is not saturated. Finally we study how the halo mass function changes as a function of the neutrino mass and compare our results with the Sheth-Tormen semi-analytic formulae. Our results are important for surveys which aim at probing cosmological parameters using clusters, as well as future experiments aiming at measuring the cosmic neutrino background directly.Comment: 20 pages, 8 figure

    Ponderomotive entangling of atomic motions

    Get PDF
    We propose the use of ponderomotive forces to entangle the motions of different atoms. Two situations are analyzed: one where the atoms belong to the same optical cavity and interact with the same radiation field mode; the other where each atom is placed in own optical cavity and the output field of one cavity enters the other.Comment: Revtex file, five pages, two eps figure

    Investigating the adsorption of anisotropic diblock copolymer worms onto planar silica and nanocellulose surfaces using a quartz crystal microbalance

    Get PDF
    Electrostatic adsorption of cationic polyelectrolytes onto anionic cellulosic substrates is an attractive route for facile surface modification of biorenewable materials. Recently, attention has focused on adsorbing cationic spherical diblock copolymer nanoparticles onto model cellulose and/or nanocellulosic substrates. Herein, we investigate physical adsorption of highly anisotropic copolymer worms bearing either anionic or cationic charge onto planar silica, cellulose nanocrystal (CNC) or cellulose nanofibril (CNF) surfaces using quartz crystal microbalance with dissipation monitoring. Electrostatic interactions dominate in the case of anionic silica and CNC surfaces because the adsorbed mass of cationic worms was greater than that of anionic worms. However, either anionic or cationic worms could be adsorbed onto in situ generated CNF substrates, suggesting that additional interactions were involved: hydrogen bonding, van der Waals forces, and possibly covalent bond formation. Scanning electron and atomic force microscopy studies of the dried planar substrates after adsorption experiments confirmed the presence of adsorbed copolymer worms. Finally, composite worm/CNF films exhibited restricted swelling behavior when immersed in water compared to reference CNF films, suggesting that the worms reinforce CNF films by acting as a physical crosslinker. This study is the first investigation of the physical adsorption of highly anisotropic diblock copolymer worms onto cellulosic surfaces

    On quantum teleportation with beam-splitter-generated entanglement

    Get PDF
    Following the lead of Cochrane, Milburn, and Munro [Phys. Rev. A {\bf 62}, 062307 (2000)], we investigate theoretically quantum teleportation by means of the number-sum and phase-difference variables. We study Fock-state entanglement generated by a beam splitter and show that two-mode Fock-state inputs can be entangled by a beam splitter into close approximations of maximally entangled eigenstates of the phase difference and the photon-number sum (Einstein-Podolsky-Rosen -- EPR -- states). Such states could be experimentally feasible with on-demand single-photon sources. We show that the teleportation fidelity can reach near unity when such ``quasi-EPR'' states are used as the quantum channel.Comment: 7 pages (two-column), 7 figures, submitted to Phys. Rev. A. Text unmodified, postscript error correcte

    Local stochastic non-Gaussianity and N-body simulations

    Full text link
    Large-scale clustering of highly biased tracers of large-scale structure has emerged as one of the best observational probes of primordial non-Gaussianity of the local type (i.e. f_{NL}^{local}). This type of non-Gaussianity can be generated in multifield models of inflation such as the curvaton model. Recently, Tseliakhovich, Hirata, and Slosar showed that the clustering statistics depend qualitatively on the ratio of inflaton to curvaton power \xi after reheating, a free parameter of the model. If \xi is significantly different from zero, so that the inflaton makes a non-negligible contribution to the primordial adiabatic curvature, then the peak-background split ansatz predicts that the halo bias will be stochastic on large scales. In this paper, we test this prediction in N-body simulations. We find that large-scale stochasticity is generated, in qualitative agreement with the prediction, but that the level of stochasticity is overpredicted by ~30%. Other predictions, such as \xi independence of the halo bias, are confirmed by the simulations. Surprisingly, even in the Gaussian case we do not find that halo model predictions for stochasticity agree consistently with simulations, suggesting that semi-analytic modeling of stochasticity is generally more difficult than modeling halo bias.Comment: v3: minor changes matching published versio

    ChatGPT sits the DFPH exam: large language model performance and potential to support public health learning

    Get PDF
    Background Artificial intelligence-based large language models, like ChatGPT, have been rapidly assessed for both risks and potential in health-related assessment and learning. However, their applications in public health professional exams have not yet been studied. We evaluated the performance of ChatGPT in part of the Faculty of Public Health’s Diplomat exam (DFPH). Methods ChatGPT was provided with a bank of 119 publicly available DFPH question parts from past papers. Its performance was assessed by two active DFPH examiners. The degree of insight and level of understanding apparently displayed by ChatGPT was also assessed. Results ChatGPT passed 3 of 4 papers, surpassing the current pass rate. It performed best on questions relating to research methods. Its answers had a high floor. Examiners identified ChatGPT answers with 73.6% accuracy and human answers with 28.6% accuracy. ChatGPT provided a mean of 3.6 unique insights per question and appeared to demonstrate a required level of learning on 71.4% of occasions. Conclusions Large language models have rapidly increasing potential as a learning tool in public health education. However, their factual fallibility and the difficulty of distinguishing their responses from that of humans pose potential threats to teaching and learning
    • 

    corecore