76 research outputs found

    BioConcens: Biomass and bioenergy production agriculture – consequences for soil fertility, environment, spread of animal parasites and socio-economy

    Get PDF
    The research programme called “international research cooperation and organic integrity” was commenced for a period 2006-2010. It is coordinated by DARCOF (The Danish Research Centre for Organic Farming). The whole programme, with acronym DARCOF III, consists of 15 projects (http://www.darcof.dk/research/darcofiii/index.html). One of them is BIOCONCENS - Biomass and bioenergy production in organic farming – consequences for soil fertility, environment, spread of animal parasites and socio-economy (http://www.bioconcens.elr.dk/uk/). The production of bioenergy in organic agriculture (OA) can reduce its dependency of fossil fuels and decrease green house gasses emission; consequently it will increase sustainability of organic farms. Biorefinery concept based on co-production of biogas, bioethanol and protein fodder in organic farming will be developed within the BIOCONCENS project and the background for the project and the different work packages will be presented in this paper

    Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    Get PDF
    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards

    Magnetic fields in the early universe in the string approach to MHD

    Get PDF
    There is a reformulation of magnetohydrodynamics in which the fundamental dynamical quantities are the positions and velocities of the lines of magnetic flux in the plasma, which turn out to obey equations of motion very much like ideal strings. We use this approach to study the evolution of a primordial magnetic field generated during the radiation-dominated era in the early Universe. Causality dictates that the field lines form a tangled random network, and the string-like equations of motion, plus the assumption of perfect reconnection, inevitably lead to a self-similar solution for the magnetic field power spectrum. We present the predicted form of the power spectrum, and discuss insights gained from the string approximation, in particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure

    Cosmological Magnetic Fields from Primordial Helicity

    Full text link
    Primordial magnetic fields may account for all or part of the fields observed in galaxies. We consider the evolution of the magnetic fields created by pseudoscalar effects in the early universe. Such processes can create force-free fields of maximal helicity; we show that for such a field magnetic energy inverse cascades to larger scales than it would have solely by flux freezing and cosmic expansion. For fields generated at the electroweak phase transition, we find that the predicted wavelength today can in principle be as large as 10 kpc, and the field strength can be as large as 10^{-10} G.Comment: 13 page

    A review of diagnostic and functional imaging in headache

    Get PDF
    The neuroimaging of headache patients has revolutionised our understanding of the pathophysiology of primary headaches and provided unique insights into these syndromes. Modern imaging studies point, together with the clinical picture, towards a central triggering cause. The early functional imaging work using positron emission tomography shed light on the genesis of some syndromes, and has recently been refined, implying that the observed activation in migraine (brainstem) and in several trigeminal-autonomic headaches (hypothalamic grey) is involved in the pain process in either a permissive or triggering manner rather than simply as a response to first-division nociception per se. Using the advanced method of voxel-based morphometry, it has been suggested that there is a correlation between the brain area activated specifically in acute cluster headache — the posterior hypothalamic grey matter — and an increase in grey matter in the same region. No structural changes have been found for migraine and medication overuse headache, whereas patients with chronic tension-type headache demonstrated a significant grey matter decrease in regions known to be involved in pain processing. Modern neuroimaging thus clearly suggests that most primary headache syndromes are predominantly driven from the brain, activating the trigeminovascular reflex and needing therapeutics that act on both sides: centrally and peripherally

    Magnetogenesis and the dynamics of internal dimensions

    Full text link
    The dynamical evolution of internal space-like dimensions breaks the invariance of the Maxwell's equations under Weyl rescaling of the (conformally flat) four-dimensional metric. Depending upon the number and upon the dynamics of internal dimensions large scale magnetic fields can be created. The requirements coming from magnetogenesis together with the other cosmological constraints are examined under the assumption that the internal dimensions either grow or shrink (in conformal time) prior to a radiation dominated epoch. If the internal dimensions are growing the magnitude of the generated magnetic fields can seed the galactic dynamo mechanism.Comment: 27 in RevTex style, four figure

    Production of biomass and bioenergy in organic agriculture and its consequences for soil quality, environment, biodiversity and socio-economy

    Get PDF
    Production of bioenergy in organic agriculture may be implemented in the future to reduce the reliance on non-renewable fossil fuels and minimize greenhouse gas (GHG) emissions. Therefore it is important to assess the potential effect this may have on soil quality and biological parameters. This project aims at designing and evaluate a combined concept for biomass and bio-energy production in OA, while considering soil bio-geo-chemical cycling of plant nutrients and biodiversity of the soil microbiota

    Loss of cardiac splicing regulator RBM20 is associated with early-onset atrial fibrillation

    Get PDF
    We showed an association between atrial fibrillation and rare loss-of-function (LOF) variants in the cardiac splicing regulator RBM20 in 2 independent cohorts. In a rat model with loss of RBM20, we demonstrated altered splicing of sarcomere genes (NEXN, TTN, TPM1, MYOM1, and LDB3), and differential expression in key cardiac genes. We identified altered sarcomere and mitochondrial structure on electron microscopy imaging and found compromised mitochondrial function. Finally, we demonstrated that 3 novel LOF variants in RBM20, identified in patients with atrial fibrillation, lead to significantly reduced splicing activity. Our results implicate alternative splicing as a novel proarrhythmic mechanism in the atria

    Human iPSC modeling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes

    Get PDF
    AIMS: Atrial Fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood.Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes differentiated from induced pluripotent stem cells (iPSC). METHODS AND RESULTS: Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells toward the cardiac lineage. Electrophysiological characterization of patient-derived cardiomyocytes (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed afterdepolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS: Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF

    Integrated motor drives: state of the art and future trends

    Get PDF
    With increased need for high power density, high efficiency and high temperature capabilities in Aerospace and Automotive applications, Integrated Motor Drives (IMD) offers a potential solution. However, close physical integration of the converter and the machine may also lead to an increase in components temperature. This requires careful mechanical, structural and thermal analysis; and design of the IMD system. This paper reviews existing IMD technologies and their thermal effects on the IMD system. The effects of the power electronics (PE) position on the IMD system and its respective thermal management concepts are also investigated. The challenges faced in designing and manufacturing of an IMD along with the mechanical and structural impacts of close physical integration is also discussed and potential solutions are provided. Potential converter topologies for an IMD like the Matrix converter, 2-level Bridge, 3-level NPC and Multiphase full bridge converters are also reviewed. Wide band gap devices like SiC and GaN and their packaging in power modules for IMDs are also discussed. Power modules components and packaging technologies are also presented
    corecore