7 research outputs found

    Fiber Optic Excitation of Silicon Microspheres in Amorphous and Crystalline Fluids

    No full text
    This study investigates the optical resonance spectra of free-standing monolithic single crystal silicon microspheres immersed in various amorphous fluids, such as air, water, ethylene glycol, and 4-Cyano-4’-pentylbiphenyl nematic liquid crystal. For the various amorphous fluids, morphology-dependent resonances with quality factors on the order of 105 are observed at 1428 nm. The mode spacing is always on the order of 0.23 nm. The immersion in various amorphous fluids affects the spectral response of the silicon microsphere and heralds this technique for use in novel optofluidics applications. Even though the nematic liquid crystal is a highly birefringent, scattering, and high-index optical medium, morphology-dependent resonances with quality factors on the order of 105 are observed at 1300 nm in the elastic scattering spectra of the silicon microsphere, realizing a liquid-crystal-on-silicon geometry. The relative refractive index and the size parameter of the silicon microsphere are the parameters that affect the resonance structure. The more 4-Cyano-4’-pentylbiphenyl interacting with the silicon microsphere, the lower the quality factor of the resonances is. The more 4-Cyano-4’-pentylbiphenyl is interacting with the silicon microsphere, the lower the mode spacing Δλ of the resonances is. The silicon microspheres wetted with nematic liquid crystal can be used for optically addressed liquid-crystal-on-silicon displays, light valve applications, or reconfigurable optical networks

    Elastic scattering from a sapphire microsphere placed on a silica optical fiber coupler: Possible applications to biosensing

    No full text
    Elastic light scattering is performed in the original band of optical fiber communication at 1300 nm for a 500 μm sapphire microsphere placed on a silica optical fiber half coupler. The morphology dependent resonances (MDRs) are observed in the transverse magnetically (TM) polarized and transverse electrically (TE) polarized 0∘ transmission and 90∘ elastic scattering obtained from the sapphire microsphere. The TE and TM MDRs can be detected selectively with the use of a Glan polarizer. The TE and TM polarization selectivity provides the ability to select relative MDR to BG levels. The TM polarization provides higher MDR signal to background ratio (SBR) and is suitable for optical monitoring, biological sensing or any other optoelectronic application that requires a high resolution optical filter. The polar angular mode spacing of 0.36 nm of the resonances correlates well with the optical size of the sapphire microsphere. The autocorrelation of the 90∘ elastic scattering spectra also shows peaks at 0.36 nm. The spectral linewidths of the resonances are on the order of 0.1 nm, which corresponds to quality factors on the order of 104. A sapphire sphere with a radius of 500 μm and relative refractive index of 1.31, resonances will red-shift by 1.01 nm (0.077%). This shift is on the order of 10 linewidths, making sapphire biophotonic sensors an interesting alternative to silica biophotonic sensors

    MIP-based biomimetic sensor for the electronic detection of serotonin in human blood plasma

    No full text
    Serotonin is an important signaling molecule in the human body. The detection of serotonin is commonly performed by high performance liquid chromatography (HPLC), which is costly and time consuming due to extensive sample preparation. We will show that these problems can be overcome by using molecularly imprinted polymers (MIPs) as synthetic receptors in combination with impedance spectroscopy as readout technique. The MIPs were prepared with several blends of the underlying monomers and the best performing MIP material was selected by optical batch-rebinding experiments. MIP microparticles were then integrated in an impedimetric sensor cell and dose–response curves were measured in PBS buffer and in non-diluted blood plasma. The sensor provides reliable data in the physiologically relevant concentration regime as an independent validation by HPLC measurements demonstrates. Finally, we show that the impedimetric response upon serotonin binding can be attributed to a capacitive effect at the interface between the MIP particles and the plasma

    A low-cost integrated biosensing platform based on SiN nanophotonics for biomarker detection in urine

    No full text
    We present a low-cost integrated nanophotonic lab-on-a-chip platform suitable for point-of-care (POC) biomarker analysis. The sensor chip included in the platform contains multiplexed Mach-Zehnder interferometers with an on-chip optical spectral analyser consisting of an arrayed-waveguide grating. The sensor chip is fabricated in silicon nitride material, which makes it compatible with consumer-electronics-grade sources and detectors, leading to the possibility of low-cost instrumentation. The nanophotonic sensor chip exhibits a detection limit of 6 × 10 RIU (Refractive Index Units), which is in the same order of magnitude as the reported values for state-of-the-art evanescent wave sensors. The sensor chip is biofunctionalised with specific bioreceptors and integrated into a polymer microfluidic cartridge. The POC instrumentation platform contains optical excitation and read-out sub-systems and dedicated on-board software for real-time analysis of patient samples. To demonstrate the versatility of the platform, we present results both on the detection of an antigen related to tuberculosis directly in urine samples using a laboratory prototype and on the detection of a protein biomarker (CRP) related to inflammation using the integrated instrument
    corecore