865 research outputs found
Anisotropy of Electrons Accelerated by a High-Intensity Laser Pulse
We describe a realistic model for a focused high-intensity laser pulse in
three dimensions. Relativistic dynamics of an electron submitted to such pulse
is described by equations of motion with ponderomotive potential depending on a
single free parameter in the problem, which we refer to as the "asymmetry
parameter". It is shown that the asymmetry parameter can be chosen to provide
quantitative agreement of the developed theory with experimental results of
Malka et al. [Phys. Rev. Lett. 78, 3314 (1997)] who detected angular asymmetry
in the spatial pattern of electrons accelerated in vacuum by a high-intensity
laser pulse
Cosmological Effects of Radion Oscillations
We show that the redshift of pressureless matter density due to the expansion
of the universe generically induces small oscillations in the stabilized radius
of extra dimensions (the radion field). The frequency of these oscillations is
proportional to the mass of the radion and can have interesting cosmological
consequences. For very low radion masses () these low frequency oscillations lead to oscillations in
the expansion rate of the universe. The occurrence of acceleration periods
could naturally lead to a resolution of the coincidence problem, without need
of dark energy. Even though this scenario for low radion mass is consistent
with several observational tests it has difficulty to meet fifth force
constraints. If viewed as an effective Brans-Dicke theory it predicts
( is the number of extra dimensions), while
experiments on scales larger than imply . By deriving the
generalized Newtonian potential corresponding to a massive toroidally compact
radion we demonstrate that Newtonian gravity is modified only on scales smaller
than . Thus, these constraints do not apply for
(high frequency oscillations) corresponding to scales less than the current
experiments (). Even though these high frequency oscillations can not
resolve the coincidence problem they provide a natural mechanism for dark
matter generation. This type of dark matter has many similarities with the
axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and
some additional references include
Light and Life: Exotic Photosynthesis in Binary Star Systems
The potential for hosting photosynthetic life on Earth-like planets within
binary/multiple stellar systems was evaluated by modelling the levels of
photosynthetically active radiation (PAR) such planets receive. Combinations of
M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii)
three-star systems were investigated and a range of stable radiation
environments found to be possible. These environmental conditions allow for the
possibility of familiar, but also more exotic forms of photosynthetic life,
such as infrared photosynthesisers and organisms specialised for specific
spectral niches.Comment: Accepted for publication in: Astrobiolog
Increasing Incidence of Clostridium difficile-associated Disease, Singapore
10.3201/eid1409.070043Emerging Infectious Diseases1491487-148
Equation of State of Oscillating Brans-Dicke Scalar and Extra Dimensions
We consider a Brans-Dicke scalar field stabilized by a general power law
potential with power index at a finite equilibrium value. Redshifting
matter induces oscillations of the scalar field around its equilibrium due to
the scalar field coupling to the trace of the energy momentum tensor. If the
stabilizing potential is sufficiently steep these high frequency oscillations
are consistent with observational and experimental constraints for arbitrary
value of the Brans-Dicke parameter . We study analytically and
numerically the equation of state of these high frequency oscillations in terms
of the parameters and and find the corresponding evolution of the
universe scale factor. We find that the equation of state parameter can be
negative and less than -1 but it is not related to the evolution of the scale
factor in the usual way. Nevertheless, accelerating expansion is found for a
certain parameter range. Our analysis applies also to oscillations of the size
of extra dimensions (the radion field) around an equilibrium value. This
duality between self-coupled Brans-Dicke and radion dynamics is applicable for
where D is the number of extra dimensions.Comment: 10 two-column pages, RevTex4, 8 figures. Added clarifying
discussions, new references. Accepted in Phys. Rev. D (to appear
Resolution of dark matter problem in f(T) gravity
In this paper, we attempt to resolve the dark matter problem in f(T) gravity.
Specifically, from our model we successfully obtain the flat rotation curves of
galaxies containing dark matter. Further, we obtain the density profile of dark
matter in galaxies. Comparison of our analytical results shows that our
torsion-based toy model for dark matter is in good agreement with empirical
data-based models. It shows that we can address the dark matter as an effect of
torsion of the space.Comment: 14 pages, 3 figure
Curvatons in Supersymmetric Models
We study the curvaton scenario in supersymmetric framework paying particular
attention to the fact that scalar fields are inevitably complex in
supersymmetric theories. If there are more than one scalar fields associated
with the curvaton mechanism, isocurvature (entropy) fluctuations between those
fields in general arise, which may significantly affect the properties of the
cosmic density fluctuations. We examine several candidates for the curvaton in
the supersymmetric framework, such as moduli fields, Affleck-Dine field, -
and -flat directions, and right-handed sneutrino. We estimate how the
isocurvature fluctuations generated in each case affect the cosmic microwave
background angular power spectrum. With the use of the recent observational
result of the WMAP, stringent constraints on the models are derived and, in
particular, it is seen that large fraction of the parameter space is excluded
if the Affleck-Dine field plays the role of the curvaton field. Natural and
well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure
Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae
Telomeres of the Mamestra brassica holocentric chromosomes were studied by Southern blotting, in-situ hybridization and Bal31 assay evidencing the presence of the telomeric (TTAGG)(n) repeat. Successively, molecular analysis of telomeres showed that TRAS1 transposable elements were present at the subtelomeric regions of autosomes but not in the NOR-bearing telomeres of the Z and W sex chromosomes. TRAS1 appeared to be transcriptionally active and non-methylated, as evaluated by RT-PCR and digestion with MspI and HpaII. Finally, dot-blotting experiments showed that the 2.8 +/- 0.5% of the M. brassicae genome consists of TRAS1
Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques
The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
- …