1,426 research outputs found

    Using Geographic Information Systems to Organize and Coordinate Holistic Watershed Resource Management

    Get PDF
    Thesis research explores the use of Geographic Information Systems (GIS), such as ESRI’s ArcGIS and Google Earth, to organize and coordinate statewide, regional, and locally led watershed initiatives in West Virginia. Holistic Watershed Resource Management (HWRM) is an innovative collaborative approach to environmental protection designed to synchronize regional and local environmental assessment and restoration efforts. HWRM success is often attributed to an inclusive decision-making process, which seeks to build and coordinate cooperative partnerships among government agencies, private businesses, educational institutions, and non-profit organizations. A case study of the Morris Creek Watershed Association and detailed surveys of over 100 West Virginia watershed associations were conducted to give additional insight into HWRM on the local and regional scale

    Life-Changing Decisions: Exploring Proximal and Distal Motivations Behind Why American Parents Adopt Domestically or Internationally

    Get PDF
    The purpose of this qualitative study was to explore American parents proximal and distal motivations for choosing domestic and international adoption from the distinctive viewpoint of adoptive parents own words and perspectives using the lenses of culture and social exchange theory The findings from this study revealed three primary factors that were found to influence adoptive parents motivations to choose domestic or international adoption 1 unique cultural influences on domestic and international adoptive parents adoption motivations 2 shared similarities and discrepant differences between adoptive parents motivations who adopted domestically or internationally and 3 perceived intrinsic and extrinsic costs and rewards that influenced parents adoption motivations A conceptual decision-making model is introduced to illustrate the complicated calculus behind American parents motivations to choose either domestic or international adoption Suggestions for adoption regulation adoption process and recruitment efforts for both domestic and international adoptions are discusse

    Transport study of intense-laser-produced fast electrons in solid targets with a preplasma created by a long pulse laser

    Full text link
    Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 17(6), 060704, 2010 and may be found at http://dx.doi.org/10.1063/1.344787

    Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin

    Get PDF
    The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic

    Negative electronic compressibility and tunable spin splitting in WSe2

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council, UK (Grant Nos. EP/I031014/1, EP/M023427/1, EP/L505079/1, and EP/G03673X/1), TRF-SUT Grant RSA5680052 and NANOTEC, Thailand through the CoE Network. PDCK acknowledges support from the Royal Society through a University Research Fellowship. MSB was supported by the Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.Tunable bandgaps1, extraordinarily large exciton-binding energies2, 3, strong light–matter coupling4 and a locking of the electron spin with layer and valley pseudospins5, 6, 7, 8 have established transition-metal dichalcogenides (TMDs) as a unique class of two-dimensional (2D) semiconductors with wide-ranging practical applications9, 10. Using angle-resolved photoemission (ARPES), we show here that doping electrons at the surface of the prototypical strong spin–orbit TMD WSe2, akin to applying a gate voltage in a transistor-type device, induces a counterintuitive lowering of the surface chemical potential concomitant with the formation of a multivalley 2D electron gas (2DEG). These measurements provide a direct spectroscopic signature of negative electronic compressibility (NEC), a result of electron–electron interactions, which we find persists to carrier densities approximately three orders of magnitude higher than in typical semiconductor 2DEGs that exhibit this effect11, 12. An accompanying tunable spin splitting of the valence bands further reveals a complex interplay between single-particle band-structure evolution and many-body interactions in electrostatically doped TMDs. Understanding and exploiting this will open up new opportunities for advanced electronic and quantum-logic devices.PostprintPeer reviewe

    Constraints on Masses of Charged PGBs in Technicolor Model from Decay bsγ b \to s \gamma

    Full text link
    In this paper we calculate the contributions to the branching ratio of BXsγB\to X_s \gamma from the charged Pseudo-Goldstone bosons appeared in one generation Technicolor model. The current CLEOCLEO experimental results can eliminate large part of the parameter space in the m(P±)m(P8±)m(P^\pm) - m(P_8^\pm) plane, and specifically, one can put a strong lower bound on the masses of color octet charged PGBs P8±P_8^\pm: m(P8±)>400  GeVm(P^{\pm}_8) > 400\;GeV at 90%C.L90\%C.L for free m(P±)m(P^{\pm}).Comment: 9 pages, 3 figures(uuencoded), Minor changes(Type error), to appear in Phys. Rev.

    Multiwavelength Studies of Young OB Associations

    Full text link
    We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters are real in the sense that the stars in the core formed after the cluster halo. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Direct evidence for subcluster merging is still unconvincing. Long-lived, asynchronous star formation is pervasive across MSFRs.Comment: 22 pages, 9 figures. To appear in "The Origin of Stellar Clusters", edited by Steven Stahler, Springer, 2017, in pres

    Isotope shift calculations for atoms with one valence electron

    Full text link
    This work presents a method for the ab initio calculation of isotope shift in atoms and ions with one valence electron above closed shells. As a zero approximation we use relativistic Hartree-Fock and then calculate correlation corrections. The main motivation for developing the method comes from the need to analyse whether different isotope abundances in early universe can contribute to the observed anomalies in quasar absorption spectra. The current best explanation for these anomalies is the assumption that the fine structure constant, alpha, was smaller at early epoch. We test the isotope shift method by comparing the calculated and experimental isotope shift for the alkali and alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be good. We then calculate the isotope shift for some astronomically relevant transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page

    The effect of two-temperature post-shock accretion flow on the linear polarization pulse in magnetic cataclysmic variables

    Full text link
    The temperatures of electrons and ions in the post-shock accretion region of a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass flow rates or for sufficiently weak magnetic fields. At lower mass flow rates or in stronger magnetic fields, efficient cyclotron cooling will cool the electrons faster than the electrons can cool the ions and a two-temperature flow will result. Here we investigate the differences in polarized radiation expected from mCV post-shock accretion columns modeled with one- and two-temperature hydrodynamics. In an mCV model with one accretion region, a magnetic field >~30 MG and a specific mass flow rate of ~0.5 g/cm/cm/s, along with a relatively generic geometric orientation of the system, we find that in the ultraviolet either a single linear polarization pulse per binary orbit or two pulses per binary orbit can be expected, depending on the accretion column hydrodynamic structure (one- or two-temperature) modeled. Under conditions where the physical flow is two-temperature, one pulse per orbit is predicted from a single accretion region where a one-temperature model predicts two pulses. The intensity light curves show similar pulse behavior but there is very little difference between the circular polarization predictions of one- and two-temperature models. Such discrepancies indicate that it is important to model some aspect of two-temperature flow in indirect imaging procedures, like Stokes imaging, especially at the edges of extended accretion regions, were the specific mass flow is low, and especially for ultraviolet data.Comment: Accepted for publication in Astrophysics & Space Scienc

    Complementarity of the CERN Large Hadron Collider and the e+ee^+e^- International Linear Collider

    Full text link
    The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective e+ee^+e^- International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale. In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.Comment: 14 pages, 17 figures, to be published in "Supersymmetry on the Eve of the LHC", a special volume of European Physical Journal C, Particles and Fields (EPJC) in memory of Julius Wes
    corecore