36 research outputs found

    N-acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis.

    Get PDF
    Biomarker-guided treatments are needed in psychiatry, and previous data suggest oxidative stress may be a target in schizophrenia. A previous add-on trial with the antioxidant N-acetylcysteine (NAC) led to negative symptom reductions in chronic patients. We aim to study NAC's impact on symptoms and neurocognition in early psychosis (EP) and to explore whether glutathione (GSH)/redox markers could represent valid biomarkers to guide treatment. In a double-blind, randomized, placebo-controlled trial in 63 EP patients, we assessed the effect of NAC supplementation (2700 mg/day, 6 months) on PANSS, neurocognition, and redox markers (brain GSH [GSHmPFC], blood cells GSH levels [GSHBC], GSH peroxidase activity [GPxBC]). No changes in negative or positive symptoms or functional outcome were observed with NAC, but significant improvements were found in favor of NAC on neurocognition (processing speed). NAC also led to increases of GSHmPFC by 23% (P = .005) and GSHBC by 19% (P = .05). In patients with high-baseline GPxBC compared to low-baseline GPxBC, subgroup explorations revealed a link between changes of positive symptoms and changes of redox status with NAC. In conclusion, NAC supplementation in a limited sample of EP patients did not improve negative symptoms, which were at modest baseline levels. However, NAC led to some neurocognitive improvements and an increase in brain GSH levels, indicating good target engagement. Blood GPx activity, a redox peripheral index associated with brain GSH levels, could help identify a subgroup of patients who improve their positive symptoms with NAC. Thus, future trials with antioxidants in EP should consider biomarker-guided treatment

    Genetic and clinical analyses of psychosis spectrum symptoms in a large multiethnic youth cohort reveal significant link with ADHD

    Get PDF
    Psychotic symptoms are not only an important feature of severe neuropsychiatric disorders, but are also common in the general population, especially in youth. The genetic etiology of psychosis symptoms in youth remains poorly understood. To characterize genetic risk for psychosis spectrum symptoms (PS), we leverage a community-based multiethnic sample of children and adolescents aged 8–22 years, the Philadelphia Neurodevelopmental Cohort (n = 7225, 20% PS). Using an elastic net regression model, we aim to classify PS status using polygenic scores (PGS) based on a range of heritable psychiatric and brain-related traits in a multi-PGS model. We also perform univariate PGS associations and evaluate age-specific effects. The multi-PGS analyses do not improve prediction of PS status over univariate models, but reveal that the attention deficit hyperactivity disorder (ADHD) PGS is robustly and uniquely associated with PS (OR 1.12 (1.05, 1.18) P = 0.0003). This association is driven by subjects of European ancestry (OR = 1.23 (1.14, 1.34), P = 4.15 × 10−7) but is not observed in African American subjects (P = 0.65). We find a significant interaction of ADHD PGS with age (P = 0.01), with a stronger association in younger children. The association is independent of phenotypic overlap between ADHD and PS, not indirectly driven by substance use or childhood trauma, and appears to be specific to PS rather than reflecting general psychopathology in youth. In an independent sample, we replicate an increased ADHD PGS in 328 youth at clinical high risk for psychosis, compared to 216 unaffected controls (OR 1.06, CI(1.01, 1.11), P = 0.02). Our findings suggest that PS in youth may reflect a different genetic etiology than psychotic symptoms in adulthood, one more akin to ADHD, and shed light on how genetic risk can be investigated across early disease trajectories

    Visual cortical plasticity and the risk for psychosis: An interim analysis of the North American Prodrome Longitudinal Study

    Get PDF
    Background: Adolescence/early adulthood coincides with accelerated pruning of cortical synapses and the onset of schizophrenia. Cortical gray matter reduction and dysconnectivity in schizophrenia are hypothesized to result from impaired synaptic plasticity mechanisms, including long-term potentiation (LTP), since deficient LTP may result in too many weak synapses that are then subject to over-pruning. Deficient plasticity has already been observed in schizophrenia. Here, we assessed whether such deficits are present in the psychosis risk syndrome (PRS), particularly those who subsequently convert to full psychosis. Methods: An interim analysis was performed on a sub-sample from the NAPLS-3 study, including 46 healthy controls (HC) and 246 PRS participants. All participants performed an LTP-like visual cortical plasticity paradigm involving assessment of visual evoked potentials (VEPs) elicited by vertical and horizontal line gratings before and after high frequency (“tetanizing”) visual stimulation with one of the gratings to induce “input-specific” neuroplasticity (i.e., VEP changes specific to the tetanized stimulus). Non-parametric, cluster-based permutation testing was used to identify electrodes and timepoints that demonstrated input-specific plasticity effects. Results: Input-specific pre-post VEP changes (i.e., increased negative voltage) were found in a single spatio-temporal cluster covering multiple occipital electrodes in a 126–223 ms time window. This plasticity effect was deficient in PRS individuals who subsequently converted to psychosis, relative to PRS non-converters and HC. Conclusions: Input-specific LTP-like visual plasticity can be measured from VEPs in adolescents and young adults. Interim analyses suggest that deficient visual cortical plasticity is evident in those PRS individuals at greatest risk for transition to psychosis

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Disordered cortico-limbic interactions during affective processing in children and adolescents at risk for schizophrenia revealed by fMRI and Dynamic Causal Modeling Archives f General Psychiatry

    No full text
    Disordered functional architecture of brain networks may contribute to the well-documented increased risk for psychiatric disorders in offspring of patients with schizophrenia.To investigate aberrant interactions between regions associated with affective processing in children and adolescent offspring of patients with schizophrenia (HR-SCZ group) and healthy control subjects using dynamic causal modeling of functional magnetic resonance imaging data.Subjects participated in a continuous affective processing task during which positive, negative, and neutral valenced faces were presented. Interactions between regions in the brain's face- and emotion-processing network were modeled using dynamic causal modeling. Multiple competing models were evaluated by a combinatorial approach and distinguished at the second level using Bayesian model selection before parameter inference.Participants were recruited from the community.Twenty-four controls with no family history of psychosis (to the second degree) and 19 children and adolescent offspring of a parent with schizophrenia (age range, 8 to 20 years).Bayesian model selection revealed a winning model, the architecture of which revealed bidirectional frontolimbic connections that were modulated by valence. Analyses of parameter estimates revealed that HR-SCZ group members were characterized by (1) decreased driving inputs to the visual cortex; (2) decreased intrinsic coupling, most robustly between frontolimbic regions; and (3) increased modulatory inhibition by negative valence of frontolimbic connections (all P < .01, Bonferroni corrected).These results are the first demonstration of network analyses techniques for functional magnetic resonance imaging data in children and adolescents at risk for schizophrenia. Dysfunctional interactions within the emotional processing network provide evidence of latent vulnerabilities that may confer risk for disordered adolescent development and eventually the emergence of the manifest disorder

    Corpus callosum signal intensity in bipolar and unipolar disorder patients

    No full text
    BACKGROUND: Anatomical abnormalities in the corpus callosum have been reported in magnetic resonance imaging (MRI) studies in patients with bipolar but not unipolar disorder. MRI signal intensity can be used as a putative index of corpus callosum myelination. OBJECTIVES: To measure MRI signal intensity in patients with bipolar and unipolar disorder to investigate abnormalities of corpus callosum myelination. METHODS: The study involved 29 DSM-IV bipolar patients (mean (SD) age, 35 (11) years; 16 male, 13 female), 23 DSM-IV unipolar patients (41 (10) years; 4 male, 19 female), and 36 healthy controls (37 (10) years; 23 male, 13 female). A 1.5T GE Signa magnet was employed, with a fast spin echo sequence. Corpus callosum signal intensity was obtained blindly using the semiautomated software NIH Image 1.62. RESULTS: Bipolar patients had lower corpus callosum signal intensity for all callosal subregions (genu, anterior and posterior body, isthmus, splenium) than healthy controls (ANCOVA, age and sex as covariates, p0.05). CONCLUSIONS: The findings suggest abnormalities in corpus callosum white matter in bipolar but not unipolar patients, possibly because of altered myelination. Such abnormalities could lead to impaired interhemispheric communication in bipolar disorder. Longitudinal MRI studies involving first episode and early onset bipolar patients will be necessary for a better understanding of the potential role of abnormalities of corpus callosum myelination in the pathophysiology of bipolar disorder
    corecore