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White matter changes in psychosis risk relate to development and
are not impacted by the transition to psychosis
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Abstract
Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However,

the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the
evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American
Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across
multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis
(CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U;
596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and
illness-onset on variation in the fractional anisotropy of cellular tissue (FAr) and the volume fraction of extracellular free
water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P
individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and
CHR-U groups displayed higher FAr in adolescence, and 4% lower FAr by 30 years of age compared to controls.
Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p <0.05). Prospective
analysis in CHR-P did not reveal a significant impact of illness onset on regional FAt or FW, suggesting that transition to
psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis—
regardless of transition outcome—is characterized by subtle age-related white matter changes that occur in tandem with
development.

Introduction

Studies of individuals at clinical-high risk for developing
psychosis (CHR) provide a powerful means to inform on
putative mechanisms underlying progression to psychosis.
Cumulative evidence suggests that subtle alterations in
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white matter microstructure emerge prior to the onset of
frank psychosis, which may suggest a preexisting neuro-
developmental anomaly [1]. However, the timing of these
changes and their relationships to the emergence of psy-
chosis remain unclear.

More than 25 diffusion magnetic resonance imaging
(dMRI) studies have examined white matter microstructure
within a prodromal risk paradigm (Supplementary Table 1).
Most studies observe cross-sectional lower fractional ani-
sotropy (FA) estimated from diffusion tensor imaging (DTT)
in CHR subjects compared to healthy controls [2-12],
particularly in the corpus callosum, superior and inferior
longitudinal fasciculi, inferior fronto-occipital fasciculi
(IFOF), uncinate fasciculi (UF) and cingulum bundle.
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However, several studies have failed to replicate these dif-
ferences [13—15] or, paradoxically, have observed higher
FA in CHR subjects compared to controls within the same
white matter fiber bundles [6, 11, 16]. Mixed findings are
perhaps not surprising given the substantial heterogeneity of
CHR populations with respect to clinical profiles and out-
comes [17].

Prospective studies of individuals before the emergence
of psychosis raise the important question of timing and
course of white matter changes in relation to psychosis
onset [18]. Longitudinal studies that track gray matter
volume and thickness have revealed rapid declines in the
first 2 years following transition to psychosis, which then
plateau thereafter [19-27]. These findings mark psychosis
onset as a neurobiologically dynamic event, associated with
changes in cortical gray matter. However, it is unclear
whether white matter alterations follow the same course,
characterized by a pinnacle moment co-occurring with
transition to psychosis. Three (out of four) previous dMRI
studies that separately examined CHR subjects who tran-
sitioned to psychosis (CHR-P) detected baseline alterations
in these individuals, notably prior to psychosis onset
[9, 28, 29]. Therefore, a departure from healthy white matter
may coincide with other illness/medication or develop-
mental (age-related) factors.

It is essential to consider variability in white matter
pathology against the backdrop of substantial brain reor-
ganization and white matter development during adoles-
cence and early adulthood [30, 31]. This point is further
reinforced by cumulative genetic and molecular evidence
that implicates early developmental biology in the white
matter disruptions associated with established psychosis
[32, 33]. Notably, age-related white matter changes (i.e., in
measures of white matter microstructure) are frequently
reported in cross-sectional studies of individuals with
established illness [34-36]. However, it is not known
whether transition to psychosis marks a tipping point for
white matter decline and/or whether these changes reflect a
gradually evolving developmental process. Testing these
hypotheses requires prospective study designs in people
who may be at imminent risk of psychosis, which is chal-
lenging in terms of recruitment and data collection. As such,
the small to modest samples—fewer than 50 CHR subjects
and fewer than 10 CHR-P subjects—utilized in previous
dMRI studies may have precluded detailed characterization
of white matter with respect to its course and timing of
alteration.

Here, we examined cross-sectional and longitudinal
white matter maturation in the largest diffusion-based
imaging population of CHR individuals to date, obtained
from the first half sample of the third iteration of the North
American Prodrome Longitudinal Study (NAPLS-3). We
aimed to examine the evolution of white matter alterations

in groups of CHR-P and CHR individuals with unknown
transition outcomes (CHR-U) after the study period (1-
year), to establish whether changes coincide with psychosis
onset and/or with maturational processes. A multi-shell
dMRI acquisition and between-site harmonization protocols
were used to derive measures of microstructure comprising
distinct white matter compartments. These included tissue-
related white matter anisotropy (FAr), capturing diffusion
in the vicinity of tissue, extracellular free water (FW),
reflecting a putative index of unrestricted extracellular water
content and FA, reflecting a non-specific index of white
matter microstructure that is commonly used in dMRI stu-
dies [37]. Linear mixed effects (LME) models were fitted to
infer developmental trajectories and temporal changes
centered around transition in order to infer the impact of
psychosis onset on white matter microstructure. A second-
ary analysis screened for associations between white matter
profiles and a range of neurobehavioral phenotypes in order
to determine whether or not white matter changes relate to
premorbid/developmental risk factors and/or to current
clinical profiles (e.g., severity of positive and negative
symptoms).

Methods
Participants

This study was approved by local Institutional Review
Board committees and informed consent was obtained from
all study participants. This study utilized neuroimaging and
clinical data collected across eight sites (Supplementary
Table 2.1) and at multiple (i.e., 1-5) timepoints (at ~2-
month intervals collected over a 12-month period) in
286 subjects (age range = 12-32 years). Subjects included
25 CHR individuals who transitioned to psychosis (CHR-P)
during the follow-up period (described below), 205 CHR
subjects whose long-term transition status was unknown
(CHR-U) and who did not transition to psychosis within the
study period, and 56 healthy control (HC) subjects who
were age and sex-matched to the two CHR groups. This
study includes subjects from the first-half sample of
NAPLS-3, which is an ongoing prospective analysis of
CHR individuals. The overall methodology of NAPLS-3
has been described in detail elsewhere [38]. This current
analysis included subjects with available dMRI data.

CHR subjects were referred by health care providers,
educators, or social service agencies, or they self-referred in
response to program websites and community education
efforts. Potential participants underwent a telephone screen
and those who screened positive were invited to an in-
person eligibility and consent evaluation across eight North
American sites. Individuals were interviewed to confirm



CHR status according to the Criteria of Psychosis-Risk
Syndromes (COPS), which is based on the Structured
Interview for Psychosis-Risk Syndromes (SIPS) [39].
Briefly, CHR patients met criteria for one or more of the
following categories:

1. Sub-threshold intensity/frequency of positive symp-
toms.

2. First-degree relative with a history of psychosis or has
a schizotypal personality disorder accompanied by a
decline in general functioning.

3. Brief limited intermittent psychotic symptoms with
spontaneous remission within 1 week.

A total of 25 CHR participants transitioned to psychosis
during the follow-up period as determined by meeting the
SIPS Presence of Psychotic Symptoms (POPS) [40] criteria.
Transition criteria require that at least one of the five SIPS
positive symptom scales reach a psychotic level of intensity
(rated 6) for a frequency of > lhour per day for 4 days per
week during the past month or that symptoms seriously
impacted functioning (e.g., severely disorganized and/or
dangerous to self or others).

Exclusion criteria for all subjects included a current or
lifetime Axis I psychotic disorder (including affective psy-
chosis) as measured by the Structured Clinical Interview for
DSM-IV Axis I Disorders (SCID) [41], IQ < 70, a history of
a central nervous system disorder, or substance dependence
in the past 6 months.

dMRI acquisition

All participants underwent MRI scanning across eight
NAPLS sites on 11 different scanners (Supplementary
Tables 2.1 and 2.2), with the same acquisition protocol.
Human and phantom data across all sites were compared to
rule out gross site effects. Multi-shell dMRI was acquired
with 30 gradient directions at » = 1000 s/mm [2], six at b =
500 s/mm?2, three at b = 200 s/mm?2, and six interleaved b0
images. An additional high b-value shell was acquired, but
not used here. The sequence included 70 contiguous axial
slices, a 256 mm field of view, 2 mm isotropic voxels, a
repetition time of 10200 ms, and an echo time of 106 ms.

Harmonization

To mitigate scanner differences that can induce nonlinear
variation in brain maps, a robust retrospective harmoniza-
tion procedure was applied to the raw dMRI data across the
11 different scanners (Supplementary Table 2.2) [34, 42]. In
brief, this involved selecting a target scanner and computing
a nonlinear transformation from each of the remaining
10 scanners to the target scanner, based on robust features

derived from decomposing the dMRI data into a common
mathematical basis using spherical harmonics. Importantly,
this procedure removes voxel-level nonlinear discrepancies
across scanners on the raw data itself, which then allows the
fitting of dMRI models to harmonized data. Applying har-
monization to the raw data also circumvents the application
of post-hoc statistical methods, such as including scanner as
a covariate in a regression model, which is linear and less
robust. Harmonization was performed separately for each b-
value shell by selecting a reference scanner (scanner 11, see
Supplementary Fig. 1) and mapping dMRI data from the
remaining scanners to this reference. A subset of controls
were selected from each scanner, age and sex-matched to
the reference control subset as targets for harmonization.
This method successfully removed scanner-specific effects,
such that statistically significant differences (p <0.01) in
whole-brain FA between the matched controls across
scanners before harmonization were no longer significant
after harmonization (Supplementary Fig. 1; p > 0.05).

Image processing
Preprocessing

dMRI data were pre-processed with FMRIB Software
Library (FSL) [43], during which 76 scans were removed

North American Prodrome
Longitudinal Study-3

(First Half Sample)
N=931
[ Image Parameter QC ]
=17 Incomplete acquisition or
N=914v incorrect image dimensions
[ Visual QC ]
=16 .
N=898 Poor quality scan ]
[ Eddy QC ]
Outlier in absolute or relative
=26 movement (i.e., one gradient
N=872 direction to another) or
number of replaced slices
[ Harmonization ]
—20 Insufficient sample size on a
N=852 single scanner (n<10) to

Final Analyses

accommodate harmonization
[ Harmonization, TBSS and ]

Fig. 1 Flowchart depicting the selection of suitable scans. Each scan
underwent several quality control (QC) procedures, followed by har-
monization to mitigate scanner/site differences. The flowchart dis-
plays the number of discarded and remaining scans following each
process.



before arriving at the final scan number of 852 (Fig. 1),
comprising 286 subjects in total (CHR-P =25; CHR-U =
205; HC = 56). Each scan was checked for correct image
parameters and visually inspected for poor image quality.
Remaining scans were corrected for motion and gradient-
induced eddy currents using FSL’s Eddy [44, 45]. Eddy
outputs were used to detect dMRI image outliers (>3 SDs
above the mean) on absolute movement, relative movement
or number of outlier slices replaced with Gaussian function.

dMRI metric computation and TBSS

FA volumes were computed by fitting a single-diffusion tensor
to the dMRI data and FW and FAt volumes were computed
by free-water imaging, which applies a regularization frame-
work to fit a two compartment model to the dMRI data [37].
The two-compartment model separates the contribution of free
water from water molecules diffusing in the vicinity of tissue.
The fractional volume of FW requires large enough spaces
that constitute unrestricted extracellular water molecules
around and between myelin and axolemma. An in-house
protocol was used (https://github.com/pnlbwh/TBSS), which
nonlinearly registers FA maps to the ENIGMA-DTI target
[46] using Advanced Normalization Tools (ANTs) [47]. The
individually registered brains were projected onto the
ENIGMA-DTI white matter skeleton with FSL’s TBSS [48],
which was employed to alleviate any residual misalignment
error. The FA-derived transformations and projection para-
meters were used to project FW and FAt maps onto the
skeleton mask. Statistical inference was performed on the
resulting skeletonized maps (FW, FAt and FA).

For each subject, a total of 14 fibers-of-interest (FOI)
were extracted from the Illinois Institute of Technology
(IIT) Human Brain probabilistic atlas version 4.1, using a
threshold of 0.25. FOIs were selected based on commonly
implicated regions in previous CHR studies published
between 2008 and 2019 (Supplementary Table 1). For each
FOI, one value was extracted by averaging each dMRI
measure (i.e., FA, FW, FAr) respectively across all voxels
traversing a probabilistic fiber bundle. To increase power
and to reduce the total number of variables, intra-
hemispheric fibers were averaged across hemispheres to
yield a total of 8 regions-of-interest (ROIs), including 7
FOIs and whole-brain/average skeletonized white matter.

Neurobehavioral phenotypes

Supplementary Table 3 displays clinical assessment scales
that were administered at baseline and some again at follow-
up (denoted by asterisks). A total of 49 baseline (Supple-
mentary Table 4) and 11 longitudinal (Supplementary
Table 5) variables were examined. Some neurobehavioral
variables were re-scaled so that higher scores indicate worse

performance/higher symptom severity. Missing data were
handled with an iterative procedure: first, subjects with
>20% of missing elements were removed (3 subjects) and
second, the remaining missing elements were imputed using
probabilistic principal component analysis (PPCA; Sup-
plementary Tables 4 and 5) [49].

Statistical modeling
Demographics and timepoint characteristics

One-way Analysis of variance (ANOVA) and Chi-square
tests evaluated differences in age and sex proportions
between the three study groups (CHR-P, CHR-U, and HC)
at baseline and across timepoints, as well as the number of
timepoints and interscan intervals between the study groups.

Between-group differences in white matter microstructure

Between-group comparisons in the white matter dMRI
parameters (FW, FAr, and FA) were performed using FSL’s
Randomise for voxel-wise analyses [50], and Matlab for
ROI analyses. Baseline differences (286 scans) were
examined with a general linear model (GLM) to assess the
null hypothesis of equality in dMRI measures between
CHR-U and HC, and between CHR-P and HC, while
controlling for the potential confounding effects of age and
sex. Multiple comparisons correction was performed with
threshold-free cluster enhancement [51] for the voxel-wise
analyses and with the false discovery rate (FDR) for
regional analyses (8 ROIs).

Modeling the impact of age and psychosis onset on white
matter microstructure

Linear mixed effects (LME) models were fitted to infer
developmental trajectories of FA (shown in Supplementary
Material), FAr and FW across age for CHR-P, CHR-U and
HC groups (fixed effects), while accounting for repeated
measurements (random effects; refer to Supplementary
Material for details). LME models were independently fitted
with age centered between 12 and 32 years in yearly
increments; that is, A =12, 13, ... 32. When the LME was
estimated with age centered at A, the main effects of group
(B, and f5) specifically pertained to group differences at the
age of A years. Therefore, fitting the model independently
at each year yielded cross-sectional snapshots of dMRI
indices across the entire age range of CHR-P, CHR-U and
HC subjects [35].

LME models were further fitted in the CHR-P population
(n = 25 with a total of 61 scans) to investigate the impact of
psychosis onset (operationalized as scan date minus psy-
chosis onset date) on variation in dMRI measures, while


https://github.com/pnlbwh/TBSS

Table 1 Sample and timepoint

characteristics. HC CHR-U CHR-P 7 P
Mean (SD or %) Mean (SD or %) Mean (SD or %)

Baseline age 20.65 (5.09) 19.20 (4.09) 19.58 (4.02) 2.54 >0.05
Average age (across timepoints) 20.91 (5.09) 19.41 4.11) 19.72 (4.10) 2.67 >0.05
Sex (males/females) 27/29 (48%) 104/101 (51%) 13/12 (52%) 0.14 >0.05
Number of timepoints® 348 (1.21) 291 (1.53) 244 (1.12) 5.44 0.005
Interscan Interval (months) 11.36 (2.73) 8.43 (5.50) 9.60 (4.90) 1.58 >0.05
Number with longitudinal data 53 (95%) 144 (70%) 20 (80%)
Scans at each timepoint n n n
1 (n=286) 56 205 25
2 (n=217) 53 144 20
3(mn=177) 44 122 11
4 (n=112) 27 82 3
5 (n=60) 15 43 2
TOTAL SCANS (n=852) 195 596 61

“Denotes a significant between-group difference.

accounting for age and sex, as well as the random between-
subject variability. Therefore, the impact of psychosis onset
was examined in a strictly prospective (i.e., within subjects)
manner.

Relationships between white matter microstructure and
neurobehavioral phenotypes

Canonical correlation analysis (CCA) was used to examine
multivariate associations between sets of neurobehavioral
measures and sets of dMRI measures, which is more prin-
cipled than independently testing each potential association
and correcting for multiple comparisons across the neuro-
behavioral and dMRI measures [52]. Two CCA’s were
performed to examine associations at baseline (baseline
dMRI and baseline neurobehavioral phenotypes) and in
changes across time (AdMRI phenotypes and Aneur-
obehavioral phenotypes). Changes in dMRI and neurobe-
havioral phenotypes were quantified by their slope,
estimated using linear regression across all available time-
points for a given subject. CCA quantified modes of cov-
ariation by identifying linear compositions that maximize
correlation between the composite neurobehavioral score
and the composite dMRI score. Data included matrices for
neurobehavioral phenotypes (baseline: 227 x49; long-
itudinal: 167 x11) and dMRI data (baseline: 227 x 24,
longitudinal: 167 x24). Baseline neurobehavioral and
dMRI matrices were adjusted for the potential confounding
effects of age, sex and site (site confound relates only to the
neurobehavioral data). Change in neurobehavioral and
dMRI matrices were further adjusted for time-related con-
founds including the number of timepoints available for
each subject, mean age across timepoints and age differ-
ences between the first and last timepoint. To avoid

overfitting, dimensionality reduction with principal com-
ponent analysis (PCA) was applied to symptom matrices,
retaining a set of principal components that captured the
most variance, as described in Taquet et al. [53]. The
resulting data-reduced neurobehavioral and dMRI matrices
were inputs to the CCA. Permutation testing was used to
evaluate statistical significance.

Results
Demographics

Demographics and timepoint characteristics are shown in
Table 1. A total of 25 individuals (12.2% of all CHR
individuals) met POPS criteria for transition to psychosis
and were thus categorized as CHR-P (mean transition age,
mean [SD]=19.73 [4.42]; mean time of transition since
baseline, mean [SD] = 4.8 months [6.39]). Diagnostic out-
comes for the CHR-P individuals were as follows: unspe-
cified schizophrenia (n =11, 44%), unspecified psychosis
(n=4, 16%), schizoaffective disorder (n =4,16%), schi-
zophreniform (n =3, 12%), primary mood disorder with
secondary psychosis (n =2, 8%), missing diagnostic out-
come (n=1, 4%).

There was no significant difference in sex or age (at
baseline or across timepoints) between the three study
groups (CHR-P, CHR-U, and HC). While there was no
significant difference in the interscan interval between the
study groups, HC completed significantly more follow-up
assessments compared to the CHR-P and CHR-U groups.
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Fig. 2 Age-related change in white matter microstructure. A pre-
sents curves modeling age-related change of white matter tissue ani-
sotropy (FA1) and free water (FW) in healthy controls (HC; blue
curve; Py + P4 x Age), clinical high-risk individuals with unknown
transition outcomes (CHR-U; green curve; By + By + (Bs + Bs) X Age)
and in CHR individuals who transitioned to psychosis (CHR-P; red
curve; P+ Po+ (Ps + Ps) + Age). Shaded areas reflect 95% con-
fidence intervals estimated with bootstrapping (1000 samples). B

Between-group differences

No overall between-group differences were seen for FA,
FAr or FW, measured on a voxel-wise or regional basis
after FDR correction (see Supplementary Tables 6-8 for
descriptives and statistics). Therefore, baseline measures of
white matter microstructure did not differentiate between
HC, CHR-U, or CHR-P.

The impact of age on white matter microstructure

Figure 2 presents age trajectories for whole-brain FAr and
FW and rates of change for the 8 ROIs (see Supplementary
Tables 9-11 for age statistics across ROIs). The rate of
change in whole-brain FAy differed between CHR-P and
HC, which survived FDR correction (fg= —0.129; t=
—2.6; FDR p=0.009). This result remained significant
after controlling for a range of medication factors (see
Supplementary Table 12). CHR-U subjects displayed tra-
jectories characterized by intermediate FAt values between
HC and CHR-P. Throughout adolescence and early adult-
hood, both CHR-P and CHR-U groups displayed higher
FAr compared to HC in whole-brain white matter (Fig. 3).
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presents the percent of age-related change per year (i.e., slope) in FA,
FAr and FW averaged across each of the 8 ROIs, in HC (f4), CHR-U
(B4 + PBs) and CHR-P (B4 + P6) groups. The FAr slope in whole-brain
white matter significantly differed between CHR-P and HC (FDRp <
0.05, as indicated by the asterisk). Negative percentages indicate age-
related decline in dMRI values. IFOF inferior fronto-occipital fasci-
culus, ILF inferior longitudinal fasciculus, SLF superior longitudinal
fasciculus, UF uncinate fasciculus, WM white matter.

However, by 30 years of age, FA1 in CHR-P and CHR-U
fell below that of HC, with regionally significant reductions
observed in the forceps minor and superior longitudinal
fasciculus among CHR-P subjects (p <0.05; Fig. 3). With
regard to FW, there were no significant between-group
differences in the rates of change in whole-brain white
matter for CHR-U (f5=0.0278; t=1.0 p>0.05) or for
CHR-P (s =0.0667; t=1.33; p>0.05) compared to HC.
However, significantly higher FW was seen in older (20+
years of age) CHR-P subjects compared to HC within the
forceps major (p <0.05; Fig. 3).

The impact of psychosis onset on white matter
microstructure

The impact of psychosis onset (i.e., scan date minus psy-
chosis onset date) in CHR-P subjects was not significant
across regional FA, FAt or FW measures (3,, FDRp > 0.05;
see Supplementary Table 13 for statistics). Therefore,
transition to psychosis did not predict variation in white
matter microstructure.
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Fig. 3 Significant group differences across ages in white matter
microstructure. Graphs present between-group differences in tissue
FA (FAt) and free water (FW) as a function of age, quantified by s/
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(CHR-U) and by p4/p; x 100% in CHR individuals who transitioned to
psychosis (CHR-P). Negative percent (%) differences indicate lower
values in CHR-U and CHR-P relative to healthy comparison (HC)

Relationships between white matter microstructure
and neurobehavioral phenotypes

Canonical correlation analysis (CCA; Fig. 4A) identified a
highly significant mode of neurobehavioral-dMRI covar-
iation, measured at baseline (r = 0.69, permutation test: p <
10 —5). As shown in Fig. 4B, the composite dMRI score
significantly covaried with higher severity of psycho-
pathology (positive, negative, disorganized, schizotypal,
and depressive symptoms) and cognitive disability, as well
as with higher cannabis use and poorer functional perfor-
mance (general, social and independent living domains) and
premorbid adjustment in childhood and adolescence
(demarcated with black squares in Fig. 4B). All neurobe-
havioral phenotypes were positively correlated with the
composite dMRI score. At the same time, both FA and FAr
but not FW measures, were significantly associated with the
composite neurobehavioral score. These covariation pat-
terns suggest that lower anisotropy relates to more severe
phenotypic abnormalities in neurobehavior, as well as to
premorbid risk factors in childhood and adolescence.

In terms of longitudinal change, there was a significant
mode of covariation between the composite slope of neu-
robehavior and the composite slope of dMRI measures (r =
0.67, permutation test: p = 0.04; Supplementary Fig. 2). No
specific phenotype contributed significantly to this complex
pattern of covariation, suggesting that subtle changes
spanning the entire composition of neurobehavioral and
dMRI parameters drive longitudinal covariation between
these measures. Specifically, upturns in symptom severity
(positive, negative and disorganized types), alcohol and
drug use, and functional disturbances accompanied com-
posite longitudinal changes in white matter microstructure,
involving decreases FA and FAr—particularly in the

subjects. Average dMRI measures were quantified yearly using age
centering between 12 and 32 years. Age epochs at which the average
dMRI measure significantly differed between the CHR groups and
comparison subjects are denoted with red/green squares (RAWp <
0.05), as determined by the significance of the B3 and f4 regression
coefficients, respectively. SLF superior longitudinal fasciculus.

cingulum and forceps minor—and increases in FW—par-
ticularly in the forceps major. These findings collectively
suggest that levels of dMRI indices in white matter relate to
premorbid risk factors at baseline and covary with features
of psychopathology across time.

Discussion

The major finding here is that individuals classified as CHR
display altered age trajectories in white matter micro-
structure, indexed by FAt and FW. Compared to HC, levels
of FAT were higher in adolescents across both CHR groups,
which preceded slower rates of growth in the CHR-U
group, and statistically significant decline in the CHR-P
group. In contrast, transition to psychosis did not predict
variation in white matter microstructure. Regardless of
transition outcome, variation in white matter measures
covaried with the severity of psychopathology and pre-
morbid risk factors. These results suggest that white matter
dMRI measures are sensitive to features of psychopathology
and to atypical development trajectories in individuals
meeting CHR criteria.

While binary illness outcomes—Iike transition to psy-
chosis—reflect attractive targets for biological association,
the impact of transition time is not reflected in our findings
regarding cellular and extracellular white matter among
CHR individuals. As such, white matter alterations asso-
ciated with psychosis risk may not undergo accelerated
change around the time of illness onset as compared to
changes occurring throughout the prodromal period. How-
ever, it remains possible that the rate of white matter change
is faster around the time of illness onset compared to that
seen in protracted illness or chronic schizophrenia. Notably,
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Fig. 4 Association between neurobehavioral and dMRI pheno-
types. Panel A presents a schematic of canonical correlation analysis
(CCA) to examine multivariate neurobehavior-dMRI covariation at
baseline. CCA maximizes covariation between the canonical score for
neurobehavioral measures (U), and the canonical score for dMRI
measures (V). Panel B presents correlations between each of the 49
neurobehavioural phenotypes with V and Panel C presents correlations
between each of the 24 dMRI measures with U. Error bars indicate

the time before and/or after psychosis onset monitored in
the current study may have been too short to capture a
turning point reflected by white matter changes. Further-
more, uncertain outcomes, particularly among individuals
lost to follow-up, may have reduced sensitivity to detect
overall between-group differences. Future longitudinal

IFOF
ILF
SLF
UF
IFOF
ILF
SLF
UF

Forceps Major
Forceps Minor
Cingulum

Wholebrain WM
Wholebrain WM

95% confidence intervals estimated with bootstrapping (1000 samples)
and black squares demarcate significant correlations, after FDR cor-
rection across the neurobehavioural and dMRI phenotypes respec-
tively. PSYCH psychopathology, IFOF inferior fronto-occipital
fasciculus, ILF inferior longitudinal fasciculus, SLF superior long-
itudinal fasciculus, UF uncinate fasciculus, WM white matter, GAF
global assessment of functioning; GF global functioning, PAS pre-
morbid adjustment scale, CBI childhood brain injury.

studies that track longer time periods following psychosis
onset are required to evaluate rates of change around the
time of illness onset, relative to long-term white matter
trajectories.

It is noteworthy, however, that age-related decline in
white matter anisotropy has been observed in individuals



with established schizophrenia-spectrum disorders [34-36],
and with non-psychotic disorders, such as bipolar disorder,
major depressive disorder and obsessive-compulsive dis-
order [54-56]. These findings have been interpreted (toge-
ther with post-mortem findings) as accelerated brain aging,
marked by increased myelin breakdown [34-36]. Here, we
extend these observations to individuals with sub-threshold
psychosis, where our findings suggest that white matter
microstructure departs from healthy development prior to
diagnosable psychotic illness and in an age-related manner.
Moreover, and consistent with prior dMRI studies across
the lifespan, healthy controls showed age-related increases
in anisotropy (Fig. 2A), coinciding with the known time-
course of myelin development [57]. Both CHR-U and
CHR-P groups deviated from this typical developmental
course, further suggesting that atypical development may
characterize CHR states, regardless of illness outcome,
albeit more evidently in those individuals who transition to
frank psychosis. Taking these age-related changes into
account may help us to appreciate better why conflicting
results arise in diffusion studies of CHR populations.
Importantly, the transition from higher FAr to lower FAr
(compared with HC) manifested gradually at around 20
years of age, explaining the lack of overall group difference
(in means) between healthy controls, CHR-U and CHR-P.
Our findings may reflect a shifted trajectory of white
matter development in CHR populations, characterized by
early maturational peaks and then slower white matter
maturation and/or premature white matter decline. Inter-
preting the cellular basis of shifted white matter trajectories
is, however, difficult, due to the inferential nature of dif-
fusion imaging measurements. Nonetheless, our use of free-
water imaging eliminates confounders from free water and
in turn, implicates cellular tissue changes in abnormal white
matter trajectories. In particular, we observed increased FAt
in whole-brain white matter among younger CHR-P sub-
jects and, to a lesser extent, among CHR-U subjects. This
finding provides an important replication of increased white
matter anisotropy in CHR, reported in prior diffusion stu-
dies [6, 11, 16]. An early peak in FAt could possibly signal
accelerated myelin development, deficient axonal pruning
or oligodendroglial hyperplasia as a compensatory response
to white matter defects or to other early/prenatal events.
In addition to higher FAt in younger CHR subjects, older
(>25 years) CHR-P subjects displayed regionally reduced
FAr in the forceps minor and superior longitudinal fasci-
culi. The forceps minor (anterior part of the corpus callo-
sum) connects homologous prefrontal brain regions, and the
superior longitudinal fasciculi represent frontoparietal con-
nections [58, 59]. Both tracts and their connecting gray
matter regions are frequently implicated in the pathophy-
siology of psychosis risk (see Supplementary Table 1), and
facilitate wide-ranging functions, including somatosensory,

attention, motor, and language processes [58, 59]. While
current dMRI measures are not specific to cellular/mole-
cular mechanisms, localized FArt effects may relate to
regional variability in white matter structures (e.g., myelin
sheath geometry), shaped by a multitude of local cellular
events and molecular signaling pathways [60, 61]. These
possibilities could be explored in future multimodal ima-
ging studies that aim to deconstruct potential white matter
pathologies in CHR.

When the neurobehavioral phenotypes were viewed in
terms of their specific contribution to white matter dMRI
profiles, a clear pattern emerged: higher clinical severity at
baseline related to lower anisotropy (FAt and FA) at
baseline. These results replicate several previous reports
that reduced FA/FAr relates to higher psychopathological
severity, cognitive disability, poorer functioning and greater
cannabis consumption [11, 62-64], suggesting that dMRI
changes co-occur with psychopathology, regardless of
specific diagnoses. We also observed a significant effect of
poorer premorbid adjustment (e.g., sociability, withdrawal
and scholastic performance) in childhood and adolescence
on white matter dMRI measures. While the direction of this
relationship is unclear (i.e., whether premorbid adjustment
reflects a consequence or a precipitant factor in altered
white matter development), and may even differ across
individuals, it reinforces the importance of early life/
developmental factors in shaping long-term profiles of
white matter microstructure.

Limitations and conclusions

Several methodological considerations related to the present
analysis are worthy of note. First, the sample size com-
prising the CHR-P group in this study is small relative to the
CHR-U and HC groups, leading to wide confidence inter-
vals around the white matter trajectories estimated for CHR-
P, and reduced power to detect changes associated with
illness onset. We will examine replicability of our findings
in the second half of the NAPLS-3 sample when these data
are available. Second, the cellular and molecular basis of
dMRI measures remain only partially understood and may
vary across CHR individuals. Thus, cellular interpretations
remain speculative until requisite large-scale multimodal
imaging studies clarify the precise nature of microstructural
changes in cellular and extracellular white matter among
CHR individuals. Third, it is possible that individuals
transitioned to psychosis after the follow-up period and
hence, anomalies observed in the CHR-U group are con-
founded by the potential of illness onset in a subset of the
individuals. Alternatively, illness trajectories among the
CHR-U individuals may follow a heterotypic course (i.e.,
attenuated psychotic symptoms that evolve into other types/



diagnostic categories) [65], although recent findings call the
frequency of heterotypic courses into question [66—68].

Transition to psychosis may not represent a flash point
marked by dramatic change in white matter microstructure.
Instead, psychopathology associated with CHR states is
reflected in subtle white matter changes that occur in tan-
dem with the pace of development. These changes are more
pronounced in those who transition to psychosis and are
marked by initially higher and later lower diffusion aniso-
tropy in white matter compared to controls. Importantly,
variation in white matter microstructure relates not only to
the severity of psychopathology, but also to historical pre-
morbid risk factors in childhood and adolescence, which
may synergistically alter the path of white matter develop-
ment. Our findings emphasize the need for holistic clinical
approaches that target multiple dimensions of health during
the course of development.

Code availability

The Matlab function fitlme was used to perform linear
mixed effects (LME) models with bootstrapping confidence
intervals. This code is publicly accessible.
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