21 research outputs found

    Scheduling in robotic cells: Process flexibility and cell layout

    Get PDF
    The focus of this study is the identical parts robotic cell scheduling problem with m machines under the assumption of process and operational flexibility. A direct consequence of this assumption is a new robot move cycle that has been overlooked in the existing literature. We prove that this new cycle dominates all classical robot move cycles considered in the literature for m = 2. We also prove that changing the layout from an in-line robotic cell to a robot-centered cell reduces the cycle time of the proposed cycle even further, whereas the cycle times of all other cycles remain the same. For the m-machine case, we find the regions where the proposed cycle dominates the classical robot move cycles, and for the remaining regions present its worst case performance with respect to classical robot move cycles. Considering the number of machines as a decision variable, we also find the optimal number of machines that minimizes the cycle time of the proposed cycle

    Design of a fully automated robotic spot-welding line

    Get PDF
    The mixed model assembly line design problem includes allocating operations to the stations in the robotic cell and satisfying the demand and cycle time within a desired interval for each model to be produced. We also ensure that assignability, precedence and tool life constraints are met. Each pair of spot welding tools can process a certain number of welds and must be replaced at the end of tool life. Tool replacement decisions not only affect the tooling cost, but also the production rate. Therefore, we determine the number of stations and allocate the operations into the stations in such a way that tool change periods coincide with the unavailability periods to eliminate tool change related line stoppages in a mixed model fully automated robotic assembly line. We provide a mathematical formulation of the problem, and propose a heuristic algorithm

    Scheduling in a three-machine flexible robotic cell

    Get PDF
    In this study, a three-machine flexible robotic manufacturing cell in which the CNC machines are used is considered. These machines are highly flexible and are capable of performing several different operations. Each machine is assumed to be capable of performing all of the required operations of each part. As a consequence of this assumption, a new class of cycles is defined and three simple and widely used cycles among this class is proposed. The regions of optimality for these cycles as well as the worst case performances are derived. Copyright © 2006 IFAC

    Cyclic scheduling of a 2-machine robotic cell with tooling constraints

    Get PDF
    In this study, we deal with the robotic cell scheduling problem with two machines and identical parts. In an ideal FMS, CNC machines are capable of performing all the required operations as long as the required tools are stored in their tool magazines. However, this assumption may be unrealistic at times since the tool magazines have limited capacity and in many practical instances the required number of tools exceeds this capacity. In this respect, our study assumes that some operations can only be processed on the first machine while some others can only be processed on the second machine due to tooling constraints. Remaining operations can be processed on either machine. The problem is to find the allocation of the remaining operations to the machines and the optimal robot move cycle that jointly minimize the cycle time. We prove that the optimal solution is either a 1-unit or a 2-unit robot move cycle and we present the regions of optimality. Finally, a sensitivity analysis on the results is conducted. © 2005 Elsevier B.V. All rights reserved

    Bicriteria robotic cell scheduling

    Get PDF
    This paper considers the scheduling problems arising in two- and three-machine manufacturing cells configured in a flowshop which repeatedly produces one type of product and where transportation of the parts between the machines is performed by a robot. The cycle time of the cell is affected by the robot move sequence as well as the processing times of the parts on the machines. For highly flexible CNC machines, the processing times can be changed by altering the machining conditions at the expense of increasing the manufacturing cost. As a result, we try to find the robot move sequence as well as the processing times of the parts on each machine that not only minimize the cycle time but, for the first time in robotic cell scheduling literature, also minimize the manufacturing cost. For each 1-unit cycle in two- and three-machine cells, we determine the efficient set of processing time vectors such that no other processing time vector gives both a smaller cycle time and a smaller cost value. We also compare these cycles with each other to determine the sufficient conditions under which each of the cycles dominates the rest. Finally, we show how different assumptions on cost structures affect the results. © 2007 Springer Science+Business Media, LLC

    Bicriteria robotic operation allocation in a flexible manufacturing cell

    Get PDF
    Consider a manufacturing cell of two identical CNC machines and a material handling robot. Identical parts requesting the completion of a number of operations are to be produced in a cyclic scheduling environment through a flow shop type setting. The existing studies in the literature overlook the flexibility of the CNC machines by assuming that both the allocation of the operations to the machines as well as their respective processing times are fixed. Consequently, the provided results may be either suboptimal or valid under unnecessarily limiting assumptions for a flexible manufacturing cell. The allocations of the operations to the two machines and the processing time of an operation on a machine can be changed by altering the machining conditions of that machine such as the speed and the feed rate in a CNC turning machine. Such flexibilities constitute the point of origin of the current study. The allocation of the operations to the machines and the machining conditions of the machines affect the processing times which, in turn, affect the cycle time. On the other hand, the machining conditions also affect the manufacturing cost. This study is the first to consider a bicriteria model which determines the allocation of the operations to the machines, the processing times of the operations on the machines, and the robot move sequence that jointly minimize the cycle time and the total manufacturing cost. We provide algorithms for the two 1-unit cycles and test their efficiency in terms of the solution quality and the computation time by a wide range of experiments on varying design parameters. © 2009 Elsevier B.V. All rights reserved

    Robotic cell scheduling with operational flexibility

    Get PDF
    In this paper, we study the problem of two-machine, identical parts robotic cell scheduling with operational flexibility. We assume that every part to be processed has a number of operations to be completed in these two machines and both machines are capable of performing all of the operations. The decision to be made includes finding the optimal robot move cycle and the corresponding optimal allocation of operations to these two machines that jointly minimize the cycle time. We prove that with this definition of the problem 1-unit robot move cycles are no longer necessarily optimal and that according to the given parameters either one of the 1-unit robot move cycles or a 2-unit robot move cycle is optimal. The regions of optimality are presented. © 2004 Elsevier B.V. All rights reserved

    Pure cycles in flexible robotic cells

    Get PDF
    In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as well as parameters. We focus on two specific cycles among the huge class of pure cycles. We prove that, in most of the regions, either one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles. We also prove that the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines. © 2007 Elsevier Ltd. All rights reserved

    Scheduling in a three-machine robotic flexible manufacturing cell

    Get PDF
    In this study, we consider a flexible manufacturing cell (FMC) processing identical parts on which the loading and unloading of machines are made by a robot. The machines used in FMCs are predominantly CNC machines and these machines are flexible enough for performing several operations provided that the required tools are stored in their tool magazines. Traditional research in this area considers a flowshop type system. The current study relaxes this flowshop assumption which unnecessarily limits the number of alternatives. In traditional robotic cell scheduling literature, the processing time of each part on each machine is a known parameter. However, in this study the processing times of the parts on the machines are decision variables. Therefore, we investigated the productivity gain attained by the additional flexibility introduced by the FMCs. We propose new lower bounds for the 1-unit and 2-unit robot move cycles (for which we present a completely new procedure to derive the activity sequences of 2-unit cycles in a three-machine robotic cell) under the new problem domain for the flowshop type robot move cycles. We also propose a new robot move cycle which is a direct consequence of process and operational flexibility of CNC machines. We prove that this proposed cycle dominates all 2-unit robot move cycles and present the regions where the proposed cycle dominates all 1-unit cycles. We also present a worst case performance bound of using this proposed cycle. © 2005 Elsevier Ltd. All rights reserved

    Comparison of solid biofuels produced from olive pomace with two different conversion methods: Torrefaction and hydrothermal carbonization

    No full text
    Olive pomace is a by-product of olive oil production process and has the potential to be a solid biofuel after thermal treatment. In this study, olive pomace was treated by two thermal conversion methods: hydrothermal carbonization (HTC) and torrefaction. Experiments were carried out under the temperature values of 250, 275, 300 and 350°C; reaction times of 10, 20 and 30 minutes for torrefaction and temperature values of 180, 200 and 220°C; reaction time of 2, 3 and 4 hours for HTC. Products with the same energy yield value (62 %) obtained the higher heating values of 23.73 and 25.20 MJ/kg for torrefaction (275°C for 20 minutes) and hydrothermal carbonization (220°C for 2 hours), respectively. Hydrothermal carbonization method has the potential to produce chars at lower temperature values and without a drying process; and obtain products with improved higher heating values, energy yields and atomic O/C and H/C ratios compare to torrefaction products. © 2016 Authors
    corecore