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The focus of this study is the identical parts robotic cell scheduling problem with
m machines under the assumption of process and operational flexibility. A direct
consequence of this assumption is a new robot move cycle that has been
overlooked in the existing literature. We prove that this new cycle dominates
all classical robot move cycles considered in the literature for m¼ 2. We also
prove that changing the layout from an in-line robotic cell to a robot-centered
cell reduces the cycle time of the proposed cycle even further, whereas the cycle
times of all other cycles remain the same. For the m-machine case, we find the
regions where the proposed cycle dominates the classical robot move cycles, and
for the remaining regions present its worst case performance with respect to
classical robot move cycles. Considering the number of machines as a decision
variable, we also find the optimal number of machines that minimizes the cycle
time of the proposed cycle.

Keywords: Robotic cell; Cyclic scheduling; Automated manufacturing;
Cell layout

1. Introduction

A manufacturing cell in which loading and unloading operations are performed by
robots is called a robotic cell. Three different cell layouts have been examined in the
literature: robot-centered cells (where the robot movement is rotational), in-line
robotic cells (where the robot moves linearly), and mobile-robot cells (generalization
of in-line robotic cells and robot-centered cells) (Logendran and Sriskandarajah
1996). The existing robotic cell scheduling literature considers in-line or mobile
robotic cells. In this study we initially consider the in-line robotic cell layout.
An in-line robotic cell with m machines is shown in figure 1. However, as Han
and Cook (1998) stated, layout analysis can improve the efficiency of the cells.
In particular, Mata and Tubaileh (1998) discuss the machine layout problem, i.e.
the locations and orientations of the machines in a flexible manufacturing cell served
by a single robot. It is generally known that robot-centered cells are preferred

*Corresponding author. Email: akturk@bilkent.edu.tr

International Journal of Production Research

ISSN 0020–7543 print/ISSN 1366–588X online # 2008 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540601100262

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
2:

40
 1

3 
N

ov
em

be
r 

20
17

 



in practice because they reduce the required physical space. We will analytically
demonstrate that changing the robotic cell layout from an in-line to a robot-centered
cell can improve the effectiveness of these systems.

In this study we consider m-machine robotic cells that repeatedly produce iden-
tical parts where each part consists of a finite set of operations. The objective is the
minimization of the cycle time, which is equivalent to maximizing the throughput.
Since the robot follows a computer program, there must be a finite activity sequence
for the robot that it repeats to produce the parts. Therefore, the robot activities must
be cyclic and minimizing this cycle time is a relevant objective. In a robotic cell for
machining operations, the processing stations are predominantly CNC machines and
these machines can communicate with the robot as well as with the cell controller on
a real-time basis. CNC machines possess operational and process flexibility by defi-
nition. Operational flexibility is defined as the capability of changing the ordering of
several operations, whereas process flexibility is defined as the capability of perfor-
ming several operations at the same machine (Browne et al. 1996). As a consequence,
a part is assumed to be composed of a set of operations, each having an individual
operation time and requiring a different cutting tool. These cutting tools are stored in
the tool magazines of the CNC machines. Whenever an operation requires a different
tool, the tool change can be done easily and in a very short period of time, provided
that the required tool is available in the tool magazine. Consequently, each CNC
machine is capable of performing all operations of a given part as long as it has the
required tools in its tool magazine.

In the current robotic cell scheduling literature, each part passes through the
machines in the same order and the processing time of each part on each machine
is a known parameter, Pi, for machine i ¼ 1, 2, . . . ,m. In some industries, such as
electroplating and plastic molding, since the parts must follow the same sequence of
operations, this assumption is valid. However, in metal cutting industries, in which
highly flexible CNC machines are used, Akturk et al. (2005) proved that considering
the allocation of operations to machines as decision variables can improve the
efficiency of the cells. Assuming operation allocation decisions are predetermined
on each machine limits the number of alternatives unnecessarily and overlooks the
flexibility of CNC machines. In this study we will assume that all of the machines are
loaded with at least one copy of all of the required tools. As a consequence,
each machine is capable of performing all of the operations of each part and,
hence, each operation can be performed by any of the machines. The processing
time of the parts on each machine depends on the allocation of the operations

Linear tracks
Robot

Input buffer Output buffer
Machine 1 Machine 2 Machine m

...

Figure 1. In-line robotic cell layout.
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to the machines. Different allocations yield different processing times on machines,
thus different cycle time values. Additionally, although the parts are identical and
have the same set of operations, the allocation of operations may be different for
each part. Unlike the current literature on identical parts robotic cell scheduling, the
problem is not only to find the optimal robot move sequence, but also to decide on
the machine to process each operation of each part (allocation of operations to the
machines) that jointly minimizes the cycle time.

The main purpose of this study is to propose a new robot move cycle that fully
utilizes the operational and process flexibility of CNC machines. This cycle will then
be compared with the classical robot move cycles present in the literature.
Interestingly, this new cycle is used extensively in industry, not because it has been
proved to be optimal, but because it is very practical, and easy to understand and
implement. In this study, we prove that this cycle is not only simple and practical but
also dominates all classical robot move cycles when there are two machines. For the
general m-machine case, we provide the regions where the proposed cycle dominates
the classical robot move cycles and for the remaining regions we analyse the worst
case performance of the proposed cycle with respect to classical robot move cycles.
In addition to this operational problem, we also answer the particular design
problem of determining the optimum number of CNC machines served by a single
robot required to minimize the cycle time.

In the literature, these systems are assumed to be flow-shop-type systems in which
each part to be processed passes through the input buffer (M0), the first machine
(M1) through to the mth machine (Mm) in respective order, and, finally, the output
buffer (Mðmþ1Þ). There are no buffers at or between the machines and the robot and
the machines can hold one part at a time. The state of the system is defined by the
location of the robot and whether the robot and the machines are loaded or empty.
After loading a part to one of the machines, the robot either waits for the part
to complete its processing or moves to unload another machine. (There is no
waiting time when taking a part from the input buffer or dropping a part to the
output buffer.)

In this study we consider identical parts. For the complexity of the multiple
parts case we refer the reader to the works of Sriskandarajah et al. (1998) and
Hall et al. (1998). The necessary framework for this problem was initially developed
by Sethi et al. (1992). They showed that, in an m-machine robotic cell, there are
m! one-unit cycles, where an n-unit cycle is defined as a sequence of robot moves in
which each machine is loaded and unloaded exactly n times and the cell returns to
its initial state. One-unit cycles are attractive since they are practical and easy to
understand and control. Sethi et al. (1992) also proved that, for a two-machine
robotic cell producing a single part type, the optimal solution is a one-unit cycle,
and conjectured that optimal one-unit cycles are superior to every n-unit cycle for
n� 2. Crama and Van de Klundert (1997) considered the identical parts problem
with m machines and showed that, considering only one-unit cycles, the problem can
be solved in (strongly) polynomial time. Hall et al. (1997) considered three machine
cells producing single part types and proved that the repetition of one-unit cycles
dominates more complicated policies that produce two units. The validity of the
conjecture of Sethi et al. (1992) for three-machine robotic flow shops was established
by Crama and Van de Klundert (1999). Brauner and Finke (1999) showed that
the conjecture is not valid for m� 4.
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In the next section we define the problem more formally and introduce
the notation and definitions pertinent to this study. In section 3 we analyse the
two-machine case. Section 4 is devoted to the analysis of the m-machine case.
Finally, section 5 concludes the paper and suggests future research directions.

2. Problem definition

In this section we give a formal definition of our problem and introduce the basic
terminology and notation. We shall adopt the following definition borrowed from
Crama and Van de Klundert (1997).

Definition 2.1: Robot activity Ai consists of the following moves of the robot:
unload a part from machine i, transport it to machine iþ 1, and load machine iþ 1.

According to this definition, in an m-machine robotic cell we have exactly mþ 1
robot activities, A0,A1, . . . ,Am, where the machines are numbered 1, 2, . . . ,m, the
input buffer is numbered 0 and the output buffer is numbered mþ 1. Since, in an
optimal cycle, we require that the robot move path is as short as possible, any two
consecutive activities uniquely determine the robot moves between them. Therefore,
any robot move cycle can be uniquely described by a permutation of the above
activities. Additionally, Crama et al. (2000) make the following basic feasibility
assumptions, which we shall also incorporate into our study.

(1) The robot cannot load an already loaded machine.
(2) The robot cannot unload an already unloaded machine.

These assumptions restrict the ordering of the activities. For example, for two
machines we have only two feasible one-unit robot move cycles:

S1 : A0A1A2,

S2 : A0A2A1:

In this study we assume that all of the operations of a part can be allocated to only
one machine and that each machine has the capability of performing all of the
operations. This problem can also be viewed as a parallel machine scheduling prob-
lem with a common server, as described by Hall et al. (2000). The operational and
process flexibility of CNC machines allows the possibility of new cycles, which
necessitates definitions of new robot activities: let A0i be the robot activity in
which the robot takes a part from the input buffer and loads machine
i ¼ 1, 2, . . . ,m, and let Aiðmþ1Þ be the robot activity in which the robot unloads
machine i and drops the part to the output buffer, where i ¼ 1, 2, . . . ,m.

In an m-machine robotic cell there are exactly 2m activities. Using these activities
we can define new cycles as follows.

Definition 2.2: Under a pure cycle, starting with an initial state, the robot performs
each of the 2m activities (A0i,Aiðmþ1Þ, i ¼ 1, . . . ,m) exactly once and the final state of
the system is identical to the initial state.

Note that, under these cycles, all of the operations of each part are performed
completely by one of the machines, and between two loadings of any one machine,
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all other machines are loaded exactly once. One repetition of such a cycle produces
m parts and in order to find the cycle time (long-run average time to produce one
part) we divide the total time necessary to complete one repetition of this cycle by m.
Each permutation of the 2m activities defines a pure cycle. However, some permuta-
tions define the same pure cycle. For example, in the two-machine case,
A01A02A13A23 and A13A23A01A02 are different representations of the same cycle. As
a result, after eliminating the different representations, there exist a total of ð2m� 1Þ!
different pure cycles in an m-machine cell. With this many different pure cycles,
finding the best and later comparing it with all the classical flow shop type robot
move cycles is extremely cumbersome and hence is omitted from the scope of the
current paper. Instead, we focus on the simplest and most widely used pure cycle as a
representative of this huge class. We prove that even this cycle dominates all classical
robot move cycles for two-machine cells and performs very well for general
m-machine cells. The proposed cycle is defined by the following activity sequence
for m machines.

Definition 2.3 A01A02 . . .A0mA1ðmþ1ÞA2ðmþ1Þ . . .Amðmþ1Þ: the robot first loads
machines 1 through m with a different part in respective order and each machine
starts processing all of the operations of its loaded part. Then, the robot unloads
machines 1 through m respectively. In order to unload machine i, the robot returns
back to machine i, waits in front of the machine if the processing of the part is
not finished, unloads the machine, transports the part to the output buffer
and drops the part.

The cycle time derivation of the proposed cycle is presented in appendix A.
We will use the parameters and decision variables shown in table 1.

In the next section we will focus on the two-machine case and show the
dominance of the proposed cycle over the traditional robot move cycles.

3. Two-machine case

In this section we compare the cycle times of the proposed cycle and the traditional
robot move cycles. The following definition will be used throughout this study.

Table 1. Parameters and decision variables.

oi processing time of operation i. Note that the processing times of operation i on all
machines are equal, 8i¼ 1, 2, . . . , r, where r is the number of operations
necessary to produce one part

P total processing time of the operations to be allocated to the machines, i.e.
P¼

Pr
i¼1 oi

� the load and unload time of workstations by the robot
� time taken by the robot to travel between any two adjacent stations. We assume

this time to be additive. That is, the time required for the robot to move from
machine i to machine j is the sum of the movement times between all of the
intervening pairs of machines in the route from machine i to j where
i, j 2 ½1, 2, . . . ,m�

T long-run average cycle time to produce one part
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Definition 3.1: We define an allocation pattern to be a specific allocation of the
operations to the m machines. A cycle using k different allocation patterns means
that the allocation of every kth part in the infinite sequence is identical and k is
minimal with this property.

Following this definition, let Pij be the total processing time of the part with
allocation pattern j on machine i. This is equivalent to the summation of the proces-
sing times of the operations that are allocated to machine i according to allocation
pattern j.

The following theorem derives a lower bound for the cycle time of any robot
move cycle in the m-machine case for which the system is assumed to be a flow shop.

Theorem 3.2: For an m-machine flow-shop-type robotic cell, the cycle time of any
n-unit cycle is no less than

TfsðmÞ ¼ maxf2ðmþ 1Þð�þ �Þ þminfP, �g, 4�þ 4�þ ðP=mÞg: ð1Þ

Proof: Geismar et al. (2005) derived the following lower bound for classical robot
move cycles when there is no flexibility, i.e. the allocation and the ordering of the
operations are assumed to be fixed and known for each machine:

max 2ðmþ 1Þð�þ �Þ þ
Xm
i¼1

minfPi, �g, 4�þ 4�þmax
i
fPig

( )
, ð2Þ

where Pi is the processing time on machine i. The reasoning behind the first argument
of the max function in (2) is as follows. The robot loads and unloads all m machines
exactly once (2m�), and also takes a part from the input buffer (�), and drops a part
to the output buffer (�) in every cycle, resulting in 2ðmþ 1Þ�. As forward movement,
the robot travels all the way from the input buffer to the output buffer in a sequence
of robot activities that takes at least ðmþ 1Þ�, and in order to return to the initial
state, the robot must travel back to the input buffer, taking at least ðmþ 1Þ�.
Additionally, note that each loading operation is followed by an unloading operation
of either the same or a different machine. (Note that, taking a part from the input
buffer is assumed to be an unloading operation.) The summation term in the first
argument of (2) represents the total time between all loading and the subsequent
unloading operations. After loading a part to machine i, the robot has the following
options: it either waits in front of the machine, awaiting the completion of the
processing of the part before unloading it (Pi), or travels to another machine to
unload it or travels to the input buffer to take another part. The minimum travel
time from machine i to any other machine is �. Thus, for machine i, in order to find a
lower bound we take the minimum of these two values and for all m machines this
totals

Pm
i¼1 minfPi, �g. With the assumptions of this study, the total robot travel time

and load/unload time do not change. However, the sum term in (2) follows from the
fact that the processing times on the machines are fixed. In this study, the processing
times are not fixed but depend on allocation patterns, in other words, they
are decision variables. For a cycle with k different allocation patterns where k is
arbitrary, the cycle is repeated k times, each repetition with differing processing
times. After loading a part to machine i, the robot either waits in front of the
machine, awaiting completion of processing (Pik), or travels to another machine to
unload it or to the input buffer to take a part, which takes at least � time. Hence, for
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all machines and for all repetitions of the cycle we have
Pk

j¼1

Pm
i¼1 minfPij, �g.

In order to find the lower bound to produce one part we must divide this by k.
Furthermore, minfP, �g �

Pm
i¼1 minfPij, �g for any allocation j, since

Pm
i¼1 Pij ¼ P.

Then we have ð1=kÞ
Pk

j¼1 minfP, �g ¼ minfP, �g. As a consequence, with the
assumptions of this study, the first argument of the max function reduces to

2ðmþ 1Þð�þ �Þ þminfP, �g:

The reasoning behind the second argument of the max function in (2) is the fol-
lowing. The cycle time of any cycle is greater than the time between two consecutive
loadings of a machine for which the consecutive loading time is the greatest. But in
order to make a consecutive loading, the robot must at least perform the following
activities. After loading a part to some machine i, the minimum time required before
unloading this part is Pi. Then, the robot unloads machine i (�), transports the part
to machine (iþ 1) (�), loads it (�), returns to machine (i� 1) (2�), unloads it (�),
transports the part to machine i (�) and loads it (�). This gives in total
4�þ 4�þ Pi. In order to find the greatest consecutive loading time we take
maxifPig. However, with the assumption of process and operational flexibility,
for a cycle with k different allocation patterns, where k is arbitrary, the longest
processing time is maxi, jðPijÞ. Since

Pm
i¼1 Pij ¼ P, 8i, we have P=m � maxi, jðPijÞ.

Hence, with the assumptions of this study, the second argument of the max
function reduces to 4�þ 4�þ P=m. This completes the proof. œ

Using (A1) the cycle time of the proposed cycle with m¼ 2 becomes

Tproposedð2Þ ¼ 4�þ 6�þ 1=2maxf0,P� ð2�þ 4�Þg, ð3Þ

and using (1) the lower bound for the traditional robot move cycles becomes

Tfsð2Þ ¼ maxf6�þ 6�þminfP, �g, 4�þ 4�þ P=2g: ð4Þ

The following theorem will establish an important contribution of this paper.

Theorem 3.3: The proposed robot move cycle A01A02A13A23 gives the minimum cycle
time for the two-machine identical parts robotic cell scheduling problem with process
and operational flexibility.

Proof: A simple comparison of equations (3) and (4) for P 2 ½0, ��, P 2 ð�, 2�þ 4��,
P 2 ð2�þ 4�, 4�þ 6�� and P 2 ð4�þ 6�,1Þ yields Tproposedð2Þ � Tfsð2Þ. œ

Note that the proposed cycle is not necessarily the best pure cycle. However,
theorem 3.3 proves that even this cycle dominates all of the classical robot move
cycles. In a two-machine cell there are six pure cycles, C1 through C6, for which the
activity sequences and the cycle time values are presented in appendix B. The follow-
ing theorem makes a comparison among the pure cycles and determines the regions
of optimality.

Theorem 3.4: If P < 2�þ 4�, C1 is optimal; if P > 2�þ 4�, C6 is optimal; if
P ¼ 2�þ 4�, both C1 and C6 perform equally well.

Proof: Observing the cycle times of the cycles presented in appendix B, one can
readily conclude that C1 dominates C2, C3, C4 and C5. A simple comparison of the
cycle times of C1 and C6 concludes the proof. œ
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At the beginning of this study, we assumed an in-line robotic cell layout (IRC).
For this layout we proved that, if we assume operational and process flexibility, the
new cycle gives better results than all of the common cycles reported in the literature.
At this point we consider changing the layout of the cell to a robot-centered one
(RCC), which is shown in figure 2. Although Han and Cook (1998) stated that layout
analysis can improve the efficiency of the cells, the classical robotic cell scheduling
literature does not compare the cycle times of robot move cycles with IRC and RCC
layouts. This is due to the fact that, for the common cycles reported in the literature,
both layout types give the same cycle time, assuming that, for both types of cell
layout, the robot transportation time between two adjacent machines is fixed at � and
assumed to be additive. In the robot-centered cell layout, as seen in figure 2, the
travel time from the input buffer to machine 1 or machine 2 is � and the travel time
from machine 1 to machine 2 is equivalent to the summation of travel times from
machine 1 to the input buffer (or output buffer) (�) and from the input buffer (output
buffer) to machine 2 (�), which gives 2�. The travel times for the IRC and RCC
layouts are different. For example, the travel time from machine 1 to machine 2 is
� in the IRC layout, whereas it is 2� in the RCC layout. As a consequence, the cycle
time of the proposed cycle will be different for these two layouts. In the following
theorem we compare the cycle times of the proposed cycle with the IRC and RCC
layouts and prove that the cycle time with the RCC layout is less than the cycle time
with the IRC layout.

Theorem 3.5: For two-machine robotic cells, the cycle time of the proposed cycle with
the RCC layout is less than the cycle time with the IRC layout.

Proof: First, let us derive the cycle time of the proposed cycle with the RCC
layout. Initially, the machines are empty and the robot is in front of the input
buffer. The robot takes a part (�), transports it to the first machine (�), loads it
(�), returns to the input buffer (�), takes another part (�), transports it to the
second machine (�), loads it (�), returns to the first machine (2�), waits if necessary

Input buffer Output buffer

Machine 1

Machine 2

Robot

Figure 2. Robot-centered cell layout.
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for the machine to finish processing of the part (w1), unloads the machine (�),
transports the part to the output buffer (�), drops it (�), moves back to the second
machine (�), waits if necessary (w2), unloads the machine (�), transports the part to
the output buffer (�), drops it (�) and returns to the input buffer (2�). Note that,
during one cycle, two parts are produced. Thus, in order to find the cycle time we
divide the total time by 2, giving

TproposedðRCCÞ ¼ 4�þ 5�þ w1 þ w2,

where w1 ¼ maxf0,P� ð2�þ 4�Þg and w2 ¼ maxf0,P� ð2�þ 4�þ w1Þg and hence
w1 þ w2 ¼ maxfw1,P� ð2�þ 4�Þg ¼ maxf0,P� ð2�þ 4�Þg. Consequently, the cycle
time of the proposed cycle with the RCC layout is

TproposedðRCCÞ ¼ 4�þ 5�þ
1

2
maxf0,P� ð2�þ 4�Þg:

On the other hand, the cycle time for the proposed cycle with the IRC layout is given
by (3). After a simple comparison we conclude that changing the layout proves to be
favorable for the proposed cycle. œ

The above theorem is important since, in many practical applications, robot-
centered cells are used simply because a particular type of cellular layout requires
less space than an in-line robotic cell layout. Furthermore, stationary base robots
(as in robot-centered cells) are cheaper to install and easier to program and,
consequently, more robust than mobile robots. As a final remark, in the new
move cycle, each part is loaded and unloaded only once, which means less gaging,
one probable reason why this cycle is preferred in practice. In the next section we
consider the m-machine case.

4. The m-machine case

For two machines it is proved that, although the proposed cycle is not the optimal
robot move cycle in all regions, it dominates over all of the classical robot move
cycles. Additionally, a comparison is made among the pure cycles and the regions of
optimality for these cycles are determined. However, since the number of pure cycles
increases significantly as the number of machines increases, finding the best pure
cycle is a huge enumerative task for m� 3. Henceforth, we will only compare the
proposed cycle with the classical robot move cycles. Recall that the proposed cycle is
a direct consequence of assuming the machines to be CNC machines that are loaded
with at least one copy of each of the required tools. Since it is easy to control and
implement, such a cycle is preferred in industry to more complex cycles, even if it is
not the provably optimal robot move cycle.

Following the conclusions drawn in the previous section, one can conjecture
that the proposed cycle is always optimal and there is no reason to consider the
robot move cycles derived under the assumption of a flow-shop-type system.
In particular, if the whole processing of a part can be done on a single machine,
there is no reason to perform a portion of it on one machine and the rest on
another. In this way, some load/unload time will be saved. As we will see below,
this conjecture holds when the robot is the bottleneck, that is, when the total
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processing time of the parts is small with respect to the load/unload time, �, and
transportation time, �. However, when the machines are the bottleneck instead of
the robot, that is, the total processing time is greater with respect to � and �, the
proposed cycle may result in larger cycle time values. If the processing time
exceeds a certain value, then the average idle time of the machines waiting for
a part to be loaded becomes greater in the proposed cycle. The following three-
machine example provides a situation of this kind.

Example 4.1: Let us assume that each part requires six operations with o1 ¼ 40,
o2 ¼ 45, o3 ¼ 50, o4 ¼ 60, o5 ¼ 50 and o6 ¼ 55, making the total processing time of
each part P¼ 300. Also, let �¼ 2 and �¼ 10. Consider the one-unit cycle S6, which is
defined by the activity sequence A0A3A2A1. The cycle time for this cycle was derived
by Sethi et al. (1992) as

TS6 ¼ 8�þ 12�þmaxf0, a� 4�� 8�, b� 4�� 8�, b� 4�� 8�g,

where a, b and c are the processing times on M1, M2 and M3, respectively. Let us
consider the following allocation of operations: operations 1 and 4 are allocated to
the first machine, a¼ 100; operations 2 and 6 are allocated to the second machine,
b¼ 100; and operations 3 and 5 are allocated to the last machine, c¼ 100. Note that
this allocation corresponds to a one-allocation pattern and with our notation
a ¼ P11, b ¼ P21 and c ¼ P31. The cycle time in this case is TS6 ¼ 148. On the
other hand, using (A1) with m¼ 3 and with the given data, the cycle time of the
proposed cycle is 152.

This example shows that we cannot establish the dominance of the proposed
cycle over the traditional robot move cycles for m� 3. However, the proposed
cycle may not be the best pure cycle in this case. For example, consider
A01A34A03A24A02A14. The cycle time of this cycle with the parameters of the above
example turns out to be 129.33. However, there are 120 pure cycles in three-machine
cells and finding regions of optimality for these cycles is unnecessarily cumbersome.
Hence, in the remainder we will only consider the proposed cycle and prove that even
this cycle performs very efficiently.

4.1 Regions where the proposed cycle dominates the traditional robot move cycles

With the following theorem we find the regions where the proposed cycle dominates,
with respect to cycle time, the traditional robot move cycles for m-machine robotic
cells. Recall that section 3 was restricted to the two-machine case. Below we shall
consider the m� 3 case.

Theorem 4.2: In comparison with the traditional robot move cycles, the proposed
cycle is the best if ðm� 2Þ� � 2� or P � 2ðm2

� 1Þ�þ ðm2
þ 2m� 2Þ�.

Proof: In order to prove this theorem, we will compare the cycle time of the
proposed cycle with the lower bound value of the traditional robot move cycle
times. Let us first recall that

TfsðmÞ ¼ max 2ðmþ 1Þð�þ �Þ þminfP, �g, 4�þ 4�þ
P

m

� �� �
,
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and

TproposedðmÞ ¼ 4�þ 2ðmþ 1Þ�þ
1

m
maxf0,P� 2ðm� 1Þ�� ðm� 1Þðmþ 2Þ�gð Þ:

Note that both of these are piecewise functions of P and can be rewritten as follows:

TfsðmÞ ¼

2ðmþ 1Þð�þ �Þ þ P, if P � �,

2ðmþ 1Þ�þ ð2mþ 3Þ�, if � < P � 2mðm� 1Þ�þmð2m� 1Þ�,

4�þ 4�þ P=m, if P > 2mðm� 1Þ�þmð2m� 1Þ�,

8>>><
>>>:

TproposedðmÞ ¼

4�þ 2ðmþ 1Þ�, if P � 2ðm� 1Þ�þ ðm� 1Þ

� ðmþ 2Þ�,

1

m

�
2ðmþ 1Þ�

þðm2
þmþ 2Þ�þ P

�
, if P > 2ðm� 1Þ�þ ðm� 1Þ

� ðmþ 2Þ�:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

A simple comparison leads to � � 2ðm� 1Þ�þ ðm� 1Þðmþ 2Þ� � 2mðm� 1Þ �þ
mð2m� 1Þ�. Hence, we will consider the following cases.

(1) If 0 � P � �, then the cycle time of the proposed cycle is

TproposedðmÞ ¼ 4�þ 2ðmþ 1Þ�:

The lower bound of the cycle times of traditional robot move cycles is

TfsðmÞ ¼ 2ðmþ 1Þ�þ 2ðmþ 1Þ�þ P:

Clearly, TproposedðmÞ � TfsðmÞ.
(2) If � < P � 2ðm� 1Þ�þ ðm� 1Þðmþ 2Þ�, then

TproposedðmÞ ¼ 4�þ 2ðmþ 1Þ� � 2ðmþ 1Þ�þ ð2mþ 3Þ� ¼ TfsðmÞ:

(3) If 2ðm� 1Þ �þ ðm� 1Þðmþ 2Þ� < P � 2mðm� 1Þ�þmð2m� 1Þ�, then

TproposedðmÞ ¼ 1=mð2ðmþ 1Þ�þ ðm2
þmþ 2Þ�þ PÞ,

and

TfsðmÞ ¼ 2ðmþ 1Þ�þ ð2mþ 3Þ�:

When we compare these two values we see that

TproposedðmÞ � TfsðmÞ () P � 2ðm2
� 1Þ�þ ðm2

þ 2m� 2Þ�,

which is one of the conditions in the statement of our theorem. Recall that, in
this region, P � 2mðm� 1Þ�þmð2m� 1Þ�. If ðm� 2Þ� � 2�, then
P � 2mðm� 1Þ�þmð2m� 1Þ� � 2ðm2

� 1Þ�þ ðm2
þ 2m� 2Þ�. As a result, if

ðm� 2Þ� � 2� and P � 2mðm� 1Þ�þmð2m� 1Þ�, then TproposedðmÞ � TfsðmÞ.
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(4) If P > 2mðm� 1Þ�þmð2m� 1Þ�, then

TproposedðmÞ ¼ 1=mð2ðmþ 1Þ�þ ðm2
þmþ 2Þ�þ PÞ,

and

TfsðmÞ ¼ 4�þ 4�þ P=m:

Comparing these two, one can show that, for ðm� 2Þ� � 2�,
TproposedðmÞ � TfsðmÞ. œ

Outside these regions, we can provide a worst case performance bound of the
proposed cycle with respect to the traditional robot move cycles. In particular,

Lemma 4.3: In the region where ðm� 2Þ� > 2� and P > 2ðm2
� 1Þ �þ

ðm2
þ 2m� 2Þ�, the cycle time of the proposed cycle is TproposedðmÞ < C � T �, where

C ¼ 1þ ½ðm2
� 3mþ 2Þ=ðm2

þ 6m� 2Þ� and T � is the optimal cycle time among the
traditional robot move cycles.

Proof: In this region we know from (1) that TfsðmÞ � 4�þ 4�þ P=m. The cycle time
of the proposed cycle in this region is

TproposedðmÞ ¼ 1=mð2ðmþ 1Þ�þ ðm2
þmþ 2Þ�þ PÞ:

Hence, we can derive a worst case performance bound for using the proposed cycle
instead of the best flow-shop-type robot move cycle as follows. Let T � be the optimal
cycle time among the traditional robot move cycles in this region:

TproposedðmÞ

T �
�

1=mð2ðmþ 1Þ�þ ðm2
þmþ 2Þ�þ PÞ

1=mð4m�þ 4m�þ PÞ

¼
2ðmþ 1Þ�þ ðm2

þmþ 2Þ�þ P

4m�þ 4m�þ P

¼ 1þ
�2ðm� 1Þ�þ ðm� 1Þðm� 2Þ�

4m�þ 4m�þ P
:

Since P > 2ðm� 1Þðmþ 1Þ�þ ðm2
þ 2m� 2Þ�, we have

TproposedðmÞ

T �
< 1þ

�2ðm� 1Þ�þ ðm� 1Þðm� 2Þ�

ð2m 2 þ 4m� 2Þ�þ ðm2 þ 6m� 2Þ�
:

Let � ¼ �� where � > 2=ðm� 2Þ:

TproposedðmÞ

T �
< 1þ

ðm� 1Þðm� 2Þ�� 2ðm� 1Þ

ðm2 þ 6m� 2Þ�þ ð2m2 þ 4m� 2Þ
:

The right-hand side becomes larger as � tends to infinity (the loading/unloading time
is negligible when compared with the robot transportation time). Hence, the bound
converges asymptotically to the following:

TproposedðmÞ

T �
< lim

�!1
1þ

ðm� 1Þðm� 2Þ�� 2ðm� 1Þ

ðm2 þ 6m� 2Þ�þ ð2m2 þ 4m� 2Þ

� �

¼ 1þ
m2
� 3mþ 2

m2 þ 6m� 2
: &
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For m¼ 2 the worst case bound is 1 and for m!1 the asymptotic bound is 2.
As a consequence, the worst case bound takes values between 1 and 2 with respect
to m. For example, when m¼ 4 the worst case bound becomes 1þ 6=38 � 1:158.

4.2 Determining the optimal number of machines for the proposed robot move cycle

In the previous section we studied the operational problem of determining the robot
move sequences for a given number of machines. Now let us consider the number of
machines as a decision variable and try to find the optimal number of machines that
minimizes the cycle time for given parameters �, � and P. The cycle time for the
proposed cycle for the most general m-machine case is given by (A1). In the following
lemma we show that this function is convex with respect to m.

Lemma 4.4: The cycle time of the proposed cycle given in (A1) is convex with
respect to m.

Proof: We can rewrite this function as

max 2m�þ 4�þ 2�,
1

m
ðm2�þ 2m�þm�þ Pþ 2�þ 2�Þ

� �
,

which is equivalent to

max 2m�þ 4�þ 2�,m�þ 2�þ �þ
1

m
ðPþ 2�þ 2�Þ

� �
: ð5Þ

The first argument of the above max function is linear with respect to m. The second
argument is a summation of two convex functions: m�þ 2�þ � and
1=mðPþ 2�þ 2�Þ (note that m>0). Thus, it is also convex. Finally, the maximum
of two convex functions is also a convex function. œ

Let a be a real number. We will denote the largest integer smaller than or equal to
a by bac. The following theorem determines the optimal number of machines given
the parameters �, � and P.

Theorem 4.5: The optimal number of machines, m*, is one of the two integers
b1=2�ð�2�� �þ �Þc or b1=2�ð�2�� �þ �Þc þ 1, where � ¼ ð4�2 þ 12��þ
9�2 þ 4�PÞ1=2.

Proof: We are trying to minimize a function of m of the form
fðmÞ ¼ maxfgðmÞ, hðmÞg, where, gðmÞ ¼ 2m�þ 4�þ 2� and hðmÞ ¼ m�þ 2�þ �þ
1=mðPþ 2�þ 2�Þ. Let m* denote the minimizer of f(m). Then m* satisfies at least
one of the following: m* is a minimizer of g(m), it is a minimizer of h(m) or
gðm�Þ ¼ hðm�Þ. Let us consider each of these cases.

(1) g(m) is a linear increasing function and is minimized for m¼ 0. However,
h(m) tends to1 for m! 0. Since f(m) takes the maximum of g(m) and h(m),
the minimizer of g(m) cannot be a minimizer of f(m).

(2) h(m) is a convex continuous function for m>0

@hðmÞ

@m
¼ 0) �� 1=m2

ð2�þ 2�þ PÞ ¼ 0) m̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=�ð2�þ 2�þ PÞ

p
:
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However, at this point,

gðm̂Þ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=�ð2�þ 2�þ PÞ

p
þ 4�þ 2�

> 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=�ð2�þ 2�þ PÞ

p
þ 2�þ � ¼ hðm̂Þ:

Hence, the minimizer of h(m) cannot be a minimizer of f(m).
(3) Hence, we can conclude that the minimizer of (5) is at the intersection point

of the two arguments of the max function, which is found as follows:

gðmÞ ¼ hðmÞ )2m�þ 4�þ 2� ¼ m�þ 2�þ �þ
1

m
ð2�þ 2�þ PÞ

)m2�þ ð2�þ �Þm� 2�� 2�� P ¼ 0:

We can find the roots of this equation by using the discriminant. There are
two roots, one of which is less than 0. But since we consider the region where
m>0 we take the non-negative root as the solution of this equation:

m ¼ 1=2� �2�� �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ 4��þ �2 þ 4�ð2�þ 2�þ PÞ

q� �
¼ 1=2�ð�2�� �þ �Þ,

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ 12��þ 9�2 þ 4�P

p
. This is a real number. However, m

represents the number of machines, which means it must be an integer.
From lemma 4.4, the function is convex with respect to m. As a consequence,
in order to find the best integer value we have to consider both sides of the
real number. That is, the largest integer smaller than 1=2�ð�2�� �þ �Þ and
the smallest integer larger than this number. The best integer value is one of
b1=2�ð�2�� �þ �Þc or b1=2�ð�2�� �þ �Þc þ 1, where � is defined as before.
In order to find which one of these two gives the minimum cycle time value,
we evaluate equation (5) at these two integer values and take the one which
gives the minimum cycle time value. œ

5. Conclusion

In this paper we have considered the m-machine identical parts robotic cell schedul-
ing problem with operational and process flexibility. We proved in theorem 3.4 that a
new robot move cycle that is used extensively in industry due to its simplicity to
understand and implement, in fact dominates the traditional robot move cycles for
m¼ 2. With theorem 4.2 we found the regions where the proposed cycle dominates
the traditional robot move cycles for m� 3. We also found a worst case performance
bound of the proposed cycle with respect to the traditional robot move cycles for
the remaining regions. An additional contribution of this study is determining the
optimal number of machines that minimizes the cycle time of the proposed cycle.
Furthermore, with the reduced cycle times (increased throughput), our results enable
the justification for the additional tool inventories that will be incurred when loading
a copy of every required tool to both of the machines (this might also necessitate a
larger tool magazine). Another important contribution of this study comes from the
layout analysis. Robot-centered cells require less physical space than in-line robotic
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cells and mobile robot cells. In this study, we proved in theorem 3.5 that changing the
layout from an in-line robotic cell to a robot-centered cell for m¼ 2 reduces the cycle
time of the new cycle even further while all others remain the same.

In theorem 4.2, the regions where the proposed cycle dominates the classical
robot move cycles is determined for m� 3. In order to prove this theorem, we
compared the proposed cycle with the lower bound of the classical robot move
cycles. For the remaining regions, Gultekin et al. (2006) proved that the proposed
cycle dominates all but one of the one-unit robot move cycles and all of the two-unit
robot move cycles in three-machine cells. However, extending these results to m� 4
machine cells is an open problem. Note that one-unit cycles need not be optimal and
the allocation of operations to the machines for each robot move cycle is to be
determined, an additional increase in the difficulty of the problem. Finally, instead
of identical parts, one may consider the multiple parts case in which finding the
sequence of parts to be processed must also be determined.
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Appendix A

Here we will derive the cycle time for the proposed cycle. Assume the robot is waiting
idle at the input buffer at time 0. For i ¼ 1, . . . ,m, let T load

i represent the time
immediately after loading machine i and T unload

i the time the robot arrives at
machine i for unloading. We set Di ¼ T unload

i � T load
i . Moreover, let wi be the

waiting time of the robot in front of machine i, i.e. wi ¼ maxf0,P�Dig. With our
notation, set

T load
1 ¼ 2�þ �,

since the robot takes a part from the input buffer (�), transports it to the first machine
(�) and loads this machine (�). After the robot loads the (i� 1)th machine, it moves to
the input buffer ðði� 1Þ�Þ, takes a part ð�Þ, transports it to the ith machine ði�Þ and
loads this machine ð�Þ. In other words,

T load
i ¼ T load

i�1 þ ð2i� 1Þ�þ 2�, for i ¼ 2, . . . ,m:

Before arriving at the first machine for unloading, the robot loads the mth machine
and moves to the first machine, i.e.

Tunload
1 ¼ T load

m þ ðm� 1Þ� ¼ 2m�þ ðm2
þm� 1Þ�:

Before unloading machine i, the robot has to first unload machine i� 1
(T unload

i�1 þ wi�1 þ �), drop the part to the output buffer (ðm� iþ 2Þ�þ �) and
return to machine i (ðm� iþ 1Þ�). Hence, for i ¼ 2, . . . ,m,

T unload
i ¼ T unload

i�1 þ ð2m� 2iþ 3Þ�þ 2�þ wi�1:
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Now, using the above relationships it is easy to obtain

D1 ¼ 2ðm� 1Þ�þ ðm2
þm� 2Þ� and Di ¼ Di�1 þ ð2m� 4iþ 4Þ�þ wi�1,

and

Di ¼ D1 þ 2ði� 1Þðm� 1Þ�þ w1 þ � � �wi�1, for i ¼ 2, . . . ,m:

Now, if w1>0, in other words w1 ¼ P�D1, then Di � P for i ¼ 2, . . . ,m and,
therefore, w2 ¼ w3 ¼ � � �wm ¼ 0. If w1¼ 0, that is to say P � D1, then also P � Di

for i ¼ 2, . . . ,m, since D1 � Di and again we have w2 ¼ w3 ¼ � � � ¼ wm ¼ 0. The total
time to produce m parts with the proposed cycle is

T unload
m þ �þ �þ �þ ðmþ 1Þ�,

and after substituting for the easily calculated value of T unload
m , this becomes

4m�þ 2mðmþ 1Þ�þmaxf0,P� 2ðm� 1Þ�� ðm� 1Þðmþ 2Þ�g:

Consequently, the cycle time of the proposed cycle with m machines is

T proposedðmÞ ¼ 4�þ 2ðmþ 1Þ�þ
1

m
ðmaxf0,P� 2ðm� 1Þ�� ðm� 1Þðmþ 2Þ�gÞ: ðA1Þ
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References

Akturk, M.S., Gultekin, H. and Karasan, O.E., Robotic cell scheduling with operational
flexibility. Discr. Appl. Math., 2005, 145, 334–348.

Brauner, N. and Finke, G., On the conjecture in robotic cells: new simplified proof for the
three-machine case. INFOR, 1999, 37, 20–36.

Browne, J., Harhen, J. and Shivnan, J., Production Management Systems, 1996
(Addison-Wesley: New York).

Crama, Y. and Van de Klundert, J., Cyclic scheduling of identical parts in a robotic cell.
Oper. Res., 1997, 45, 952–965.

Crama, Y. and Van de Klundert, J., Cyclic scheduling in 3-machine robotic flow shops.
J. Schedul., 1999, 4, 35–54.

Crama, Y., Kats, V., van de Klundert, J. and Levner, E., Cyclic scheduling in robotic
flowshops. Ann. Oper. Res., 2000, 96, 97–124.

Geismar, H.N., Dawande, M. and Sriskandarajah, C., Approximation algorithms for k-unit
cyclic solutions in robotic cells. Eur. J. Oper. Res., 2005, 162, 291–309.

Gultekin, H., Akturk, M.S. and Karasan, O.E., Scheduling in a three-machine robotic flexible
manufacturing cell. Comput. Oper. Res., 2007, 34, 2463–2477.

Cycle Activity sequence Cycle time

C1 A01A02A13A23 4�þ 6�þ 1=2ðmaxf0,P� 2�� 4�gÞ
C2 A01A02A23A13 4�þ 6�þ P=2
C3 A01A13A02A23 4�þ 6�þ P
C4 A01A13A23A02 4�þ 6�þ P=2
C5 A01A23A13A02 4�þ 7�þ 1=2ðmaxf0,P� 2�� 4�gÞ
C6 A01A23A02A13 4�þ 7�þ 1=2ðmaxf0,P� 4�� 8�gÞ

2120 H. Gultekin et al.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
2:

40
 1

3 
N

ov
em

be
r 

20
17

 



Hall, N.G., Kamoun, H. and Sriskandarajah, C., Scheduling in robotic cells: classification,
two and three machine cells. Oper. Res., 1997, 45, 421–439.

Hall, N.G., Kamoun, H. and Sriskandarajah, C., Scheduling in robotic cells: complexity and
steady state analysis. Eur. J. Oper. Res., 1998, 109, 43–65.

Hall, N.G., Potts, C.N. and Sriskandarajah, C., Parallel machine scheduling with a common
server. Discr. Appl. Math., 2000, 102, 223–243.

Han, B.T. and Cook, J.S., An efficient heuristic for robot acquisition and cell formation.
Ann. Oper. Res., 1998, 77, 229–252.

Logendran, R. and Sriskandarajah, C., Sequencing of robot activities and parts in
two-machine robotic cells. Int. J. Prod. Res., 1996, 34, 3447–3463.

Mata, V. and Tubaileh, A., The machine layout in robot cells. Int. J. Prod. Res., 1998, 36,
1273–1292.

Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J. and Kubiak, W., Sequencing of parts
and robot moves in a robotic cell. Int. J. Flex. Mfg Syst., 1992, 4, 331–358.

Sriskandarajah, C., Hall, N.G. and Kamoun, H., Scheduling large robotic cells without
buffers. Ann. Oper. Res., 1998, 76, 287–321.

2121Scheduling in robotic cells

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
2:

40
 1

3 
N

ov
em

be
r 

20
17

 




