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Abstract This paper considers the scheduling problems
arising in two- and three-machine manufacturing cells con-
figured in a flowshop which repeatedly produces one type
of product and where transportation of the parts between
the machines is performed by a robot. The cycle time of
the cell is affected by the robot move sequence as well
as the processing times of the parts on the machines. For
highly flexible CNC machines, the processing times can be
changed by altering the machining conditions at the expense
of increasing the manufacturing cost. As a result, we try
to find the robot move sequence as well as the processing
times of the parts on each machine that not only minimize
the cycle time but, for the first time in robotic cell schedul-
ing literature, also minimize the manufacturing cost. For
each 1-unit cycle in two- and three-machine cells, we de-
termine the efficient set of processing time vectors such that
no other processing time vector gives both a smaller cycle
time and a smaller cost value. We also compare these cy-
cles with each other to determine the sufficient conditions
under which each of the cycles dominates the rest. Finally,
we show how different assumptions on cost structures affect
the results.

Keywords Robotic cell · CNC · Bicriteria optimization ·
Controllable processing times

1 Introduction

The quest for improvement in component manufacturing has
led to an increase in the level of automation in manufactur-
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ing industries. This trend involves the use of computer con-
trolled machines and automated material handling devices.
One of the widespread applications of automation is the use
of robotic cells. A manufacturing cell consisting of a number
of machines and a material handling robot is called a robotic
cell. The efficient use of robotic cells necessitates the tack-
ling of some important problems. Among these, the design
of the cells and the scheduling of robot moves are promi-
nent. In this paper we will consider the scheduling problems
arising in two- and three-machine robotic cells producing
identical parts. Each of the identical parts is assumed to have
one distinct operation for each machine which makes a total
of m operations in an m-machine robotic cell. These oper-
ations are assumed to be processed in the same sequence,
namely in increasing order of machine label, for each part.
In scheduling theory and practice, two main objectives are
time and cost. Minimizing production time (equivalently,
maximizing throughput) could have the highest priority in
“production planning”, while minimizing production costs
has the highest priority in “process planning”. It should also
be noted that the former of these objectives is relevant when
the demand is assumed to be unlimited. However, in to-
day’s highly competitive environment, most industries face
a limited demand. Although there is an extensive literature
on robotic cell scheduling problems, as far as the authors
know, none of these consider cost objectives. Furthermore,
the trade-offs involved in considering several different cri-
teria provide useful insights to the decision maker. For ex-
ample, a solution which minimizes the cycle time (long run
average time to produce one part) may perform poorly in
terms of cost. Thus, in the context of real life scheduling
problems it is more relevant to consider problems with such
dual criteria nature. This paper considers cost objectives si-
multaneously with time objectives in the context of robotic
cells.
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In robotic cells, highly flexible Computer Numerical
Control (CNC) machines are used for the metal cutting op-
erations so that the machines and the robot can interact on
a real time basis. Machining conditions such as the cutting
speed and the feed rate are controllable variables for these
machines. Consequently, the processing time of any opera-
tion on these machines can be reduced by changing the ma-
chining conditions at the expense of incurring extra cost re-
sulting in the opportunity of reducing the cycle time. Due
to this reasoning, assuming the processing times to be fixed
on each machine is not realistic. In this study, the process-
ing times are taken as decision variables. Different from the
current literature, the problem is not only to find the robot
move sequence but also to determine the processing times
of the operations on the machines that simultaneously mini-
mize the cycle time and the total manufacturing cost. Since
we have two criteria, the optimal solution will not be unique
but instead a set of nondominated solutions will be identi-
fied. A solution is called nondominated if no other feasible
solution has smaller objective function values for both per-
formance measures. Hoogeveen (2005) provides a review
for multicriteria and bicriteria scheduling models.

The processing time for each operation can be optimized
from two different points of view: (i) minimizing cost per
unit, or (ii) maximizing production rate. The first criterion
is common and basic to all manufacturing. On the other
hand, in the current robotic cell scheduling literature only
the second criterion (e.g., minimizing the overall cycle time
or maximizing throughput) is discussed extensively. This
objective is important when the production order must be
completed as quickly as possible. When there is a limited
demand, robotic cells should operate in the interval between
these two cases (referred to as “high-efficiency range”) that
could be defined by generating a set of nondominated solu-
tions by solving this bicriteria optimization problem.

A survey of the literature on controllable processing
times covering the state of the art up through 1990 can
be found in Nowicki and Zdrzalka (1995). Most of the
studies in the existing literature of controllable process-
ing times assume a linear cost function (Vickson 1980;
van Wassenhove and Baker 1982; Daniels and Sarin 1989;
Janiak and Kovalyov 1996; Cheng et al. 1998). Although
this assumption simplifies the problem, it is not realistic
because it does not reflect the law of diminishing returns.
Thus, in this study we assume a nonlinear, strictly convex,
differentiable cost function. Kayan and Akturk (2005) con-
sidered a single machine bicriteria scheduling model with
controllable processing times. They selected total manufac-
turing cost and any regular scheduling measure-one which
cannot be improved by increasing the processing times-
such as makespan, completion time or cycle time, as the
two objective criteria. They derived lower and upper bounds
on processing times. In a related study, Shabtay and Kaspi

(2004) considered the classical single machine scheduling
problem of minimizing the total weighted flow time with
controllable processing times. In their setting, the processing
times can be controlled by allocating a continuously nonre-
newable resource such as financial budget, overtime and en-
ergy. They assumed the processing times to be convex, non-
linear functions of the amount of the resource consumed.
The objective was to allocate the resource to the jobs and
to sequence the jobs so as to minimize the total weighted
flow time.

There is an extensive literature on robotic cell scheduling
problems with surveys including Crama et al. (2000) and
Dawande et al. (2005). An n-unit cycle can be defined as a
robot move cycle which produces exactly n units and ends
up with the same state of the cell as the starting state. 1-
unit cycles have drawn the bulk of the attention since they
are practical, easy to understand and control. Furthermore,
they are proved to give optimal solutions in two- (Sethi
et al. 1992) and three-machine (Crama and Van de Klun-
dert 1999) robotic cells producing identical parts. However,
Brauner and Finke (1999) showed that 1-unit cycles need not
be optimal for m ≥ 4. Crama and Van de Klundert (1997)
described a polynomial time dynamic programming algo-
rithm for minimizing the cycle time over all 1-unit cycles
in an m-machine cell producing identical parts. Akturk et
al. (2005) considered a robotic cell with two identical CNC
machines which possess operational and process flexibili-
ties. Each part is assumed to have a number of operations,
and the allocation of the operations to the machines along
with the optimal robot move cycle that jointly minimize the
cycle time were determined.

In this study we consider manufacturing cells used in
metal cutting industries in which the CNC machines are
used. As a consequence, the robots are used as material
handling devices. However, in manufacturing cells used in
chemical and electroplating industries, hoists are used as
material handling devices. The production line consists of a
sequence of chemical tanks. During the process, a part must
be soaked on each chemical tank successively for a specified
period of time. This problem is commonly known as hoist
scheduling problem (see Chu 2006; Lee et al. 1997). The
most distinct feature of the hoist scheduling problems from
the robotic cell scheduling problems is that the job process-
ing time at each machine is strictly limited by a lower and an
upper bound (i.e., the time window constraints). This means
that any hoist schedule that causes a hoist not to pick up a
job within the time window is infeasible. In addition, after
being removed from the tank, a part must be directly sent
to the next tank on its route and submerged so that the time
exposed to air is minimized. This is referred to as the no-
wait constraints. However, in robotic cell scheduling prob-
lems, the parts can stay on the machines indefinitely after
the processing is finished.
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The organization of the paper is as follows: In the next
section we will present the notation and some definitions
that will be used throughout the paper. The problem defini-
tion and the mathematical formulation will also be presented
in the next section. In Sect. 3 two- and three-machine cells
will be analyzed and the set of nondominated solutions will
be determined. In Sect. 4 different cost structures including
the cost incurred by the robot will be analyzed. Section 5 is
devoted to the concluding remarks and lists potential future
research directions.

2 Problem definition

In this study we assume the cell to have an in-line robotic
cell layout as can be seen in Fig. 1. There are no buffers in
front of the machines. As a result, a part is either on one of
the machines or on the robot at any time instant. As most of
the studies of the robotic cell scheduling literature, we will
restrict ourselves with 1-unit cycles since they are simple,
practical and provably give good results. Each part is as-
sumed to have a number of operations o1, o2, . . . , om in an
m-machine robotic cell, where oi represents the operation to
be performed on machine i with corresponding processing
time denoted by Pi . Processing times on the CNC machines
can be written as functions of the machine parameters such
as the cutting speed and the feed rate. As a consequence, se-
lecting different parameters yields different processing time
values. Total manufacturing cost for the CNC machines can
be written as the summation of machining and tooling costs.
The machining cost can be considered as a function of ei-
ther the exact working time of the machines or the cycle
time which includes some idle time for the machines. The
former of these assumes that the machines incur cost only if
they perform some operation on the parts. However, the lat-
ter case assumes that another job cannot be scheduled dur-
ing these idle times. We will start with the former of these

assumptions and the latter case will be analyzed in Sect. 4
where we consider different cost structures. There is a trade-
off between machining and tooling costs in selecting the
processing time values. Reducing the processing time re-
duces the machining cost but at the same time it reduces
the tool life which in turn increases the tooling cost. Con-
versely, increasing the processing time increases the tool life
and thus reduces the tooling cost, but this increases the ma-
chining cost.

Kayan and Akturk (2005) determined lower and upper
bounds for the processing times in order to minimize a con-
vex cost function and any regular scheduling measure. The
lower bound of a processing time is derived from constraints
such as the limited tool life, machine power and surface
roughness. On the other hand, the upper bound of a process-
ing time is the processing time value for which the total man-
ufacturing cost is minimized, so that beyond this value of
processing time, both objectives get worse. Note that, these
upper and lower bounds are different from time window
constraints used in hoist scheduling problems which indi-
cate that any schedule that causes the hoist not to pick up
a part within the time window is infeasible. In this study a
schedule in which the processing times exceed their upper
bounds is still feasible but proved to be not optimal. The
lower bound corresponds to the minimum processing time-
maximum cost case, whereas the upper bound corresponds
to the maximum processing time-minimum cost case. Let
P L

i and P U
i denote the lower and upper bounds for the

processing time of operation oi and fi(Pi) denote the man-
ufacturing cost incurred by the same operation. In this study
we assume fi(Pi) to be strictly convex and differentiable.
As a consequence, from the derivation of the lower and up-
per bounds of the processing times, it is monotonically de-
creasing for P L

i ≤ Pi ≤ P U
i , i = 1,2, . . . ,m. As a conse-

quence, we can write the total manufacturing cost incurred
by all the operations as

∑
i fi(Pi), which is also a convex,

Fig. 1 Inline robotic cell layout
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Fig. 2 Manufacturing cost with respect to processing time

differentiable function. Obviously, the total manufacturing
cost does not depend on the robot move cycle but depends
only on the processing times of the operations, whereas the
cycle time depends on both. Figure 2 depicts the machining,
tooling and the total manufacturing costs with respect to the
processing time of an operation. P L

i and P U
i values and the

cost function in between these values are also depicted. It
is clear from the determination of the lower and the upper
bounds that the portion of the manufacturing cost function
lying in between the bounds is decreasing.

We denote a processing time vector as
P = (P1,P2, . . . ,Pm). Any processing time violating one
of its bounds is so called infeasible. As a consequence, we
can define the set of feasible processing time vectors as

P feas = {(P1,P2, . . . ,Pm) ∈ Rm : P L
i ≤ Pi ≤ P U

i , ∀i}. On
the other hand, feasible robot move cycles are defined by
Crama and Van de Klundert (1997) as the cycles in which
the robot does not load an already loaded machine and does
not unload an already empty machine. For example, in a
two-machine robotic cell there are two feasible 1-unit cy-
cles, namely, S2

1 and S2
2 where Sm

i represents the ith robot
move cycle in an m-machine robotic cell. We denote the set
of all feasible robot move cycles in an m-machine robotic
cell as S m

feas. Before proceeding, let us present some defini-
tions and notation that will be used throughout this study.

ε: The load/unload times of machines by the robot. Consis-
tent with the literature we assume that loading/unloading
times for all machines are the same.

δ: Time taken by the robot to travel between two consecu-
tive machines. We assume that the robot travel time from
machine i to j is |j − i|δ. So the triangular equality is sat-
isfied.

K : Cycle time, i.e., the long run average time that is re-
quired to produce one part.

Co: Operating cost of the machines. Since we assume the
machines to be identical, operating cost is the same for
each machine.

Ti : Cost of tool i used (for i = 1, . . . ,m, since each opera-
tion might require a different tool).

F1(S,P ) = ∑m
i=1 fi(Pi): Total manufacturing cost which

depends only on the processing times. Note that the indi-
vidual cost function fi(Pi) for each operation oi , is strictly
convex and differentiable, and it is monotonically decreas-
ing for P L

i ≤ Pi ≤ P U
i , i = 1,2, . . . ,m.

F2(S,P ): Cycle time corresponding to robot move cycle S

and processing time vector P .

As a result of the bounding scheme explained above, we
can formulate the bicriteria problem as follows:

min Total manufacturing cost,
min Cycle time,
Subject to P L

i ≤ Pi ≤ P U
i , ∀i

This formulation minimizes two conflicting objectives si-
multaneously. There are different ways to deal with bicri-
teria problems. We shall adopt the notation summarized in
Hoogeveen (2005). Let f and g represent the two perfor-
mance measures. The first method minimizes a linear com-
posite objective function in f and g with unknown rela-
tive weights and is denoted by Gl(f,g). The second way is
called the hierarchical optimization or the lexicographical
optimization and is denoted by Lex(f, g). In this approach,
performance measure f is assumed to be more important
than g. As a result, this problem minimizes g subject to
the constraint that the solution value of f is minimum. The
third one is called the epsilon-constraint method, denoted by
ε(f |g), as discussed in T’kindt and Billaut (2006). In this
approach nondominated points are found by solving a series
of problems of the form: minimize f given an upper bound
on g. The epsilon-constraint method has been widely used in
the literature, because the decision maker can interactively
specify and modify the bounds and analyze the influence of
these modifications on the final solution. The last approach
(which will be used in this study) minimizes a composite
objective function in f and g and is denoted by G(f,g).
In this approach all the nondominated points are generated
where the only foreknowledge is that the composite function
G is nondecreasing in both arguments. Since this particular
approach does not use any of the aggregation methods, it is
computationally more demanding than the other approaches.

The decision variables of the bicriteria problem formu-
lated above are the processing times as well as the robot
move cycles. In this study we will consider each 1-unit cy-
cle individually. In other words, for each 1-unit cycle we
will solve the bicriteria problem to determine the process-
ing times and compare these 1-unit cycles with each other.
However, in order to be able to find solutions minimizing
both objectives simultaneously for 1-unit cycle S, we will
first consider the epsilon-constraint formulation of the prob-
lem. That is, we will consider ε(F1(S,P )|F2(S,P )) to de-
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termine the sufficient conditions for the processing time val-
ues minimizing the manufacturing cost for a given level of
cycle time. Using these conditions we will be able to write
the manufacturing cost as a function of the cycle time, which
means we will be able to determine the composite objective
function G. As a result, for any given cycle time (manu-
facturing cost) value we will be able to determine the cor-
responding manufacturing cost (cycle time) value and the
processing times of the parts on the machines.

Epsilon-Constraint Problem (ECP)

min Total manufacturing cost,

Subject to Cycle time ≤ K, (1)

P L
i ≤ Pi ≤ P U

i , ∀i. (2)

In this study a solution to the bicriteria problem defines
both a feasible robot move cycle and a corresponding feasi-
ble processing time vector for the parts. More formally, we
can state a solution as follows:

Definition 1 A solution to the bicriteria problem for an m-
machine robotic cell is represented as ξ = (Sm,P ) where
Sm ∈ S m

feas and P ∈ P feas. Let X = {ξ = (Sm,P ) : Sm ∈
S m

feas and P ∈ P feas} be the set of all feasible solutions.

In the context of bicriteria optimization theory, solution
ξ1 dominates solution ξ2 if it is not worse than ξ2 under any
of the performance measures, and is strictly better than it
under at least one of the performance measures. Nondomi-
nated solutions are classified as Pareto optimal. We can state
these more formally as follows:

Definition 2 We say that ξ1 dominates ξ2 and denote it as
ξ1 � ξ2 if and only if F1(ξ1) ≤ F1(ξ2) and F2(ξ1) ≤ F2(ξ2)

one of which is a strict inequality. A solution ξ∗ ∈ X is
called Pareto optimal, if there is no other ξ ∈ X such that
ξ � ξ∗. If ξ∗ is Pareto optimal, z∗ = (F1(ξ

∗),F2(ξ
∗)) is

called efficient. The set of all efficient points is the efficient
frontier.

Recall that in this study the problem is twofold. That is,
we try to find both the robot move sequence and the process-
ing times of the parts on the machines. In order to achieve
this, we will fix the robot move cycles and for each ro-
bot move cycle we will determine the set of nondominated
processing time vectors. In other words, we will solve the
bicriteria problem for each 1-unit cycle. The set of nondom-
inated processing time vectors for an arbitrary 1-unit robot
move cycle Sm

i can be defined as follows:

Definition 3 P ∗(Sm
i ) = {P ∈ P feas: There is no other P ∈

P feas such that (Sm
i ,P ) � (Sm

i ,P )}.

We already defined how one solution dominates another
solution. However, while comparing robot move cycles with
each other we will make use of the following, which defines
how one robot move cycle dominates another one in the con-
text of this study.

Definition 4 A cycle Sm
i is said to dominate another cy-

cle Sm
j (Sm

i � Sm
j ) if there is no P̂ ∈ P ∗(Sm

j ) such that

(Sm
j , P̂ ) � (Sm

i , P̃ ), ∀P̃ ∈ P ∗(Sm
i ).

In the current literature, the processing times are assumed
to be fixed. A cycle is said to dominate another one if the
cycle time of the former is less than that of the latter with
the same, fixed processing times used for both cycles. How-
ever, in order to find a dominance relation between two
cycles as stated in Definition 4, the processing times used
in the two cycles need not be the same. Hence, a domi-
nance relation between two cycles is found by comparing
the minimum cost values of the two cycles corresponding
to the same cycle time value. That is, F1(S

m
i , P̃ ) is com-

pared with F1(S
m
j , P̂ ), for all P̃ ∈ P ∗(Sm

i ) and P̂ ∈ P ∗(Sm
j )

where F2(S
m
i , P̃ ) = F2(S

m
j , P̂ ). Although in such a flexible

environment, 1-unit cycles may not be optimal, we will re-
strict ourselves with these cycles as is frequently done in the
literature.

In the next section we will determine the set of nondom-
inated processing time vectors for the 1-unit cycles for two-
and three-machine cells.

3 Solution procedure

In this section we will consider two- and three-machine
cells, respectively. For each 1-unit cycle, S, we will deter-
mine P ∗(S), the set of nondominated processing time vec-
tors, and then compare these cycles with each other in light
of Definition 4 to find sufficient conditions under which each
of the cycles remain nondominated among all 1-unit cycles.

In order to define the robot move sequence performed un-
der each cycle we will make use of the following definition
which is borrowed from Crama and Van de Klundert (1997).

Definition 5 In an m-machine robotic cell, Ai is the robot
activity defined as: robot unloads machine i, transfers part
from machine i to machine i + 1, loads machine i + 1. The
input buffer is denoted as machine 0 and the output buffer is
denoted as machine m + 1.

3.1 Two-machine case

Let us first analyze the S2
1 cycle. The activity sequence of S2

1
is A0A1A2. The cycle time of this cycle can be calculated as
6ε + 6δ +P1 +P2. In order to minimize the cost for a given
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cycle time value, K , the first constraint (1) of the ECP must
be replaced by:

6ε + 6δ + P1 + P2 ≤ K.

The following lemma is one of the major contributions of
this study which determines P ∗(S2

1), the processing times of
the parts on each machine under the S2

1 cycle that simultane-
ously minimize the cycle time and the total manufacturing
cost. Let (P ∗

1 ,P ∗
2 ) be the optimal solution to the ECP formu-

lated for the S2
1 cycle, where the cycle time is bounded by K .

Note that (P ∗
1 ,P ∗

2 ) ∈ P ∗(S2
1), according to Definition 3.

Lemma 1

1. If K = 6ε +6δ +P L
1 +P L

2 then P ∗
1 = P L

1 and P ∗
2 = P L

2 .

Corresponding cost is F1(S
2
1 , (P L

1 ,P L
2 )) = f1(P

L
1 ) +

f2(P
L
2 ).

2. If K = 6ε+6δ+P U
1 +P U

2 then P ∗
1 = P U

1 and P ∗
2 = P U

2 .

Corresponding cost is F1(S
2
1 , (P U

1 ,P U
2 )) = f1(P

U
1 ) +

f2(P
U
2 ).

3. If 6ε + 6δ + P L
1 + P L

2 < K < 6ε + 6δ + P U
1 + P U

2 then
optimal processing times of the ECP are found by solving
the following equations: 6ε + 6δ + P ∗

1 + P ∗
2 = K and

∂f1(P
∗
1 ) = ∂f2(P

∗
2 ).

After solving, one may get one of the following cases:
3.1 If both processing times satisfy their own bounds

then the solution found is optimal.
3.2 Else if exactly one of the processing times, P ∗

i , vi-
olates one of its bounds, say P b

i , then the optimal
solution is P ∗

i = P b
i and P ∗

j = K − 6ε − 6δ − P b
i ,

i, j = 1,2, i �= j .
3.3 Else if one of the processing times (assume P ∗

i ) vi-
olates its lower bound (P L

i ) and the other one (P ∗
j )

violates its upper bound (P U
j ) then the optimal solu-

tion is found by comparing the manufacturing costs of
the following two processing time settings:
(i) P ∗

i = P L
i , P ∗

j = K − 6ε − 6δ − P L
i or

(ii) P ∗
j = P U

j , P ∗
i = K − 6ε − 6δ − P U

j , i, j = 1,2,
i �= j .

Proof For S2
1 , the cycle time satisfies the following, 6ε +

6δ+P L
1 +P L

2 ≤ K ≤ 6ε+6δ+P U
1 +P U

2 . If K = 6ε+6δ+
P L

1 +P L
2 then there exists a unique solution where P ∗

1 = P L
1

and P ∗
2 = P L

2 , with corresponding cost f1(P
L
1 ) + f2(P

L
2 ).

In the same way, if K = 6ε + 6δ + P U
1 + P U

2 then there

exists a unique solution where P ∗
1 = P U

1 and P ∗
2 = P U

2 , with

corresponding cost f1(P
U
1 ) + f2(P

U
2 ). For the remaining

case, let (P ∗
1 ,P ∗

2 ) be the optimal solution to our problem.
Then both of the following cannot hold at the same time:
P ∗

i = P L
i and P ∗

i = P U
i , unless P L

i = P U
i . Also since 6ε +

6δ +P L
1 +P L

2 < K < 6ε +6δ +P U
1 +P U

2 , either P ∗
1 �= P L

1

or P ∗
2 �= P L

2 , and either P ∗
1 �= P U

1 or P ∗
2 �= P U

2 . As a result,
(P ∗

1 ,P ∗
2 ) is a regular point. Additionally, since the objective

function and the constraints are convex, any point satisfying
the Karush–Kuhn–Tucker (KKT) conditions is optimal. The
Lagrangian function for point P ∗ is as follows:

L
(
P ∗,μ∗) = f1

(
P ∗

1

) + f2
(
P ∗

2

)

+ μ∗(6ε + 6δ + P ∗
1 + P ∗

2 − K
)
.

If we set ∇P (L(P ∗,μ∗)) = 0, we get:

∂f1
(
P ∗

1

)+μ∗ = 0 and ∂f2
(
P ∗

2

)+μ∗ = 0 with the addi-

tional constraints, μ∗ ≥ 0 and P L
i ≤ P ∗

i ≤ P U
i , i = 1,2. As

a result of these equations we have the following:

μ∗ = −∂f1
(
P ∗

1

) = −∂f2
(
P ∗

2

)
. (3)

On the other hand, since ∂fi(P
∗
i ) < 0 for P ∗

i < P U
i ⇒ μ∗ =

−∂fi(P
∗
i ) > 0, which implies that the corresponding con-

straint must be satisfied as equality:

6ε + 6δ + P ∗
1 + P ∗

2 = K. (4)

P ∗
i can be found by solving (3) and (4) simultaneously. If

exactly one of the P ∗
i values violates one of its upper or

lower bounds, P ∗
i is set to the bound which is violated and

the remaining processing time is found correspondingly us-
ing (4). Both of the processing times can also violate their
own bounds. This can only be the case if one of the process-
ing times violates its lower bound and the other one violates
its upper bound. Let P ∗

i < P L
i and P ∗

j > P U
j , i, j = 1,2,

i �= j . Then there exist two alternative solutions, as stated in
the statements (3.3.(i)) and (3.3.(ii)) of this lemma, and the
optimal solution is found by comparing the manufacturing
cost values for these two alternatives.

Note that, in order to determine the optimal processing
time values, a nonlinear equation system must be solved
(see (3) and (4)) which has a unique root for P ∗

i ≥ 0, i =
1,2. The solution of these equations can be approximated
by using either the Newtonian method, the golden search al-
gorithm, or a bisection algorithm. �

The above solution procedure finds the processing times
which give the minimum cost for a given cycle time value.
That is, the given resource (in this case the cycle time) is al-
located to two alternatives (in this case the processing times
on the two machines) without violating the bounds. While
allocating this resource, priority is given to the alternative
(processing time) which has the highest contribution to the
cost. That is, the processing time which has the highest con-
tribution to the cost is increased more than the other one
without exceeding the corresponding bounds. According to
this lemma, for given manufacturing cost functions, fi(Pi),
∀i, the optimal processing times of the ECP can be written
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as functions of the cycle time, K . Using this fact, the total
manufacturing cost can also be written as a function of K ,
which aids in determining the efficient frontier of the bi-
criteria problem. The range of the cycle time can easily be
determined by using the lower and the upper bounds of the
processing time values. As a result, the minimum manufac-
turing cost (cycle time) value corresponding to any given cy-
cle time (manufacturing cost) value can be determined eas-
ily. Furthermore, the processing times of the parts on the
machines can also be determined with the help of which the
machine parameters such as the speed and the feed rate are
determined.

Till now we considered the cost function to be any con-
vex, nonlinear, differentiable function. Now let us consider
more specifically a single-tool, single pass turning operation
on CNC machines. For a more detailed explanation of the
cost figures used in this part we refer the reader to Kayan and
Akturk (2005). For this operation, the total manufacturing
cost can be written as the summation of the machining and
the tooling costs. Machining cost is Co · (P1 + P2), where
Co is the operating cost of the CNC machine ($/minute).
Recall that in this section we assume the machining cost
to be allocated in terms of the exact working times of the
machines (P1, P2). Different allocation schemes will be an-
alyzed in Sect. 4. On the other hand, the tooling cost is
T1U1P

a1
1 + T2U2P

a2
2 , where Ti > 0 and ai < 0 are specific

constants for tool i and Ui > 0 is a specific constant for op-
eration i regarding parameters such as the length and the
diameter of the operation. We assume that each operation
is performed with a corresponding tool. Let us consider a
given cycle time value K = 6ε +6δ+P1 +P2 ⇒ P1 +P2 =
K − 6ε − 6δ. Then the machining cost can be rewritten as
Co · (K − 6ε − 6δ), which is constant for a given cycle time,
K . In order to find the minimum total cost corresponding
to K , the tooling cost will be minimized and summed with
the corresponding machining cost. Then using Lemma 1 the
solution can be found as follows:

1. If K = 6ε +6δ +P L
1 +P L

2 then P ∗
1 = P L

1 and P ∗
2 = P L

2 .
Corresponding cost is Co ·(K−6ε−6δ)+T1U1(P

L
1 )a1 +

T2U2(P
L
2 )a2 .

2. If K = 6ε + 6δ + P U
1 + P U

2 then P ∗
1 = P U

1 and
P ∗

2 = P U
2 . Corresponding cost is Co · (K − 6ε − 6δ) +

T1U1(P
U
1 )a1 + T2U2(P

U
2 )a2 .

3. Otherwise, P ∗
i is found by solving the following two

equations, 6ε + 6δ + P ∗
1 + P ∗

2 = K and
P ∗

2 = [(T1U1a1)/(T2U2a2)]1/(a2−1) · (P ∗
1 )(a1−1)/(a2−1).

If any of the processing times violates any of the bounds,
update all processing times accordingly so that they each
satisfy their bounds and 6ε + 6δ + P ∗

1 + P ∗
2 = K .

If the operations on both machines are made with a tool
of the same type, then a1 = a2 = a and T1 = T2 = T . In this
case the above equations can be solved easily to determine

the processing times as follows:

P ∗
1 = [

(K − 6ε − 6δ)(U2)
1/(a−1)

]

/
[
(U1)

1/(a−1) + (U2)
1/(a−1)

]

and

P ∗
2 = [

(K − 6ε − 6δ)(U1)
1/(a−1)

]

/
[
(U1)

1/(a−1) + (U2)
1/(a−1)

]

As a consequence, the optimal total cost can be written in
terms of the cycle time as follows:

F1 = Co · (K − 6ε − 6δ)

+ {[
T U1U2(K − 6ε − 6δ)a

]

/
[
(U1)

1/(a−1) + (U2)
1/(a−1)

]a−1}

for 6ε + 6δ + P L
1 + P L

2 ≤ K ≤ 6ε + 6δ + P U
1 + P U

2 .
This identifies the whole set of nondominated solutions

and shows the exact tradeoff between the cycle time K and
the total manufacturing cost F1.

Now let us consider the S2
2 cycle for which the activity

sequence can be written as A0A2A1. The cycle time of S2
2

can be calculated to be max{6ε + 8δ,P1 + 4ε + 4δ,P2 +
4ε + 4δ}. Thus, constraint (1) of the ECP is replaced by the
following:

max{6ε + 8δ,P1 + 4ε + 4δ,P2 + 4ε + 4δ} ≤ K.

It is obvious that under S2
2 K satisfies max{6ε + 8δ,P L

1 +
4ε + 4δ,P L

2 + 4ε + 4δ} ≤ K ≤ max{6ε + 8δ,P U
1 + 4ε +

4δ,P U
2 + 4ε + 4δ}. Restricting K to this region, the above

constraint can be replaced by the following two linear con-
straints:

P1 + 4ε + 4δ ≤ K,

P2 + 4ε + 4δ ≤ K.

Lemma 2 Under cycle S2
2 , for a given cycle time level

K , the processing times minimizing the cost are: P ∗
i =

min{P U
i ,K − 4ε − 4δ}, i = 1,2.

Proof Any point (P ∗
1 ,P ∗

2 ) for which P L
1 < P ∗

1 < P U
1 and

P L
2 < P ∗

2 < P U
2 is a regular point and under these con-

ditions P ∗
1 = P ∗

2 = K − 4ε − 4δ is the point satisfying
the KKT conditions. Since the objective function and the
constraints are convex, this point is optimal. Including the
bounds, the optimal processing times can be rewritten as
P ∗

i = min{P U
i ,K − 4ε − 4δ}, i = 1,2. As one can observe,

for any nonlinear, convex cost function we get the same
processing time values. �
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As a consequence of this lemma, the total manufacturing
cost can be written as a function of the cycle time which
defines the efficient frontier of the bicriteria problem. The
intuition behind this lemma is the following: Having greater
processing times without exceeding the upper bounds of the
processing times and the given cycle time level K is bet-
ter in terms of manufacturing cost and in the above case the
processing times are set to their maximum allowable level.
Note that in this cycle, after loading a part to one of the ma-
chines the robot does not wait in front of the machine but
instead performs other activities and returns back to unload
the part after finishing these activities. Then, if the process-
ing of a part finishes before the robot returns back to unload
the part, the speed of the machine can be reduced so that
the processing time is increased without increasing the cycle
time. This means having less cost with the same cycle time
value. Furthermore, it is apparent that the optimal process-
ing times on both machines are balanced under the S2

2 cycle.
A numerical example will be helpful for understanding.

Example 1 Let us consider S2
2 cycle and a turning operation

for this example and assume that both machines use a tool
of the same type. Let the parameters be given as follows:
T = 4, Co = 0.5, U1 = 0.2, U2 = 0.03, a = −1.43423,
P L

1 = 0.5, P U
1 = 1.4, P L

2 = 0.3, P U
2 = 0.64, ε = 0.1,

and δ = 0.2. Let us first consider the solution where all
of the processing times are set to their lower bounds,
(S2

2 , (0.5,0.3)). The Gantt chart on top of Fig. 3 depicts
this cycle. For this solution, F1(S

2
2 , (0.5,0.3)) = 3.237 and

F2(S
2
2 , (0.5,0.3)) = 2.2. If we analyze this cycle, we ob-

serve that the robot never waits and is the bottleneck for
this case. Without increasing the cycle time, we can in-
crease the processing time on the first machine from 0.5
to 1 and the processing time on the second machine from
0.3 to 1. Now let us find the optimal processing times on
these machines for K = 2.2 by using Lemma 2. We have
P ∗

i = min{P U
i ,K − 4ε − 4δ} ⇒ P ∗

1 = 1,P ∗
2 = 0.64. That

is, the processing time of the first machine is increased up
to the end of the idle time period shown in Fig. 3, but the
processing time of the second machine could not be in-
creased because the upper bound of this processing time
is less than this value. The Gantt chart for this solution is
depicted as the second chart in Fig. 3. As it is seen, for this
case the robot never waits and F1(S

2
2 , (1,0.64)) = 1.848

and F2(S
2
2 , (1,0.64)) = 2.2. From Definition 4, we conclude

that (S2
2 , (1,0.64)) � (S2

2 , (0.5,0.3)). Thus, we eliminate
(S2

2 , (0.5,0.3)) from further consideration. Let us also con-
sider another solution in which all of the processing times
are fixed to their upper bounds, (S2

2 , (1.4,0.64)). The Gantt
chart for this solution is depicted as the last one in Fig. 3.
Note that in this case the first machine becomes the bot-
tleneck and the robot waits for this machine in order to
finish the processing. In this case, F1(S

2
2 , (1.4,0.64)) =

1.7413 and F2(S
2
2 , (1.4,0.64)) = 2.6. When we compare

this solution with (S2
2 , (1,0.64)), F1(S

2
2 , (1.4,0.64)) <

F1(S
2
2 , (1,0.64)) but F2(S

2
2 , (1.4,0.64)) > F2(S

2
2 , (1,

0.64)). That is, none of these two solutions dominates one
another.

After characterizing P ∗(S2
1) and P ∗(S2

2), the following
theorem compares the two 1-unit robot move cycles S2

1 and
S2

2 and finds the sufficient conditions under which one dom-
inates the other.

Theorem 1 Whenever S2
2 is feasible (K ≥ 6ε + 8δ) it dom-

inates S2
1 .

Proof The cycle time of the S2
2 cycle can be at least

6ε + 8δ. Hence, for the cycle time values less than 6ε + 8δ,
S2

2 cycle is not feasible and we have S2
1 � S2

2 . Now
let us consider the region where the cycle time is at
least 6ε + 8δ and compare the two cycles for the same
cycle time value. Let (P̂1, P̂2) ∈ P ∗(S2

1), which satisfies
K = P̂1 + P̂2 + 6ε + 6δ. The optimal processing times
for S2

2 with the same cycle time value are the follow-
ing: P̃i = min{P U

i , P̂1 + P̂2 + 2ε + 2δ}, i = 1,2, where

(P̃1, P̃2) ∈ P ∗(S2
2). Since P U

i ≥ P̂i and P̂1 + P̂2 +2ε +2δ ≥
P̂i , then P̃i ≥ P̂i . For P L

i ≤ P ∗
i ≤ P U

i , the total manufactur-
ing cost is monotonically decreasing. Since for the same
cycle time value, the optimal processing times for the S2

2
cycle are greater than that of the S2

1 cycle, that means the
total manufacturing cost of the S2

2 cycle is less than that of
S2

1 cycle. Consequently, we have S2
2 � S2

1 . �

This theorem is one of the major contributions of this pa-
per and states that for a given cell data, for the cycle time
values that can be attained by the S2

2 cycle, the minimum
cost is also attained by the same cycle. However, for very
small cycle time values which cannot be attained by the S2

2
cycle, although the cost values can be very high, S2

1 cy-
cle is still an alternative for the decision maker. Note that
K < 6ε + 8δ ⇔ P̂1 + P̂2 < 2δ. This fact can be used to
rewrite the above theorem. According to the different val-
ues of the bounds of the processing times, different ver-
sions of this theorem can also be created. For example, if
P L

1 + P L
2 ≥ 2δ then all the cycle time values that can be at-

tained by the S2
1 cycle can also be attained by the S2

2 cycle.
As a result, S2

2 � S2
1 in the whole region. In a similar way

if P U
1 + P U

2 < 2δ then S2
1 � S2

2 in the whole region. From
these, we can conclude that for greater processing times S2

2
is preferable to S2

1 and for smaller processing times vice
versa. Observe that K = 6ε + 8δ or P̂1 + P̂2 = 2δ, is the re-
gion of indifference in the case of Sethi et al. (1992). How-
ever, in the settings of this study, in this region S2

2 domi-
nates S2

1 . That is, previous studies can not handle the cost
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Fig. 3 Gantt charts for different processing time settings for the above example

component and thus state that both cycles perform iden-
tically. However, although both cycles give the same cy-
cle time value, S2

2 has a smaller manufacturing cost value
and is preferred to S2

1 . Additionally, if P U
1 ≤ 2ε + 4δ and

P U
2 ≤ 2ε + 4δ then the cycle time of S2

2 can only take one
value which is equivalent to 6ε + 8δ.

The following example will aid in depicting such special
cases.

Example 2 Let us consider a turning operation and as-
sume that both machines use a tool of the same type.
Let the parameters be given as follows: T = 4, Co = 0.5,
U1 = 0.2, U2 = 0.03, a = −1.43423, P L

1 = 0.1, P U
1 = 1.4,

P L
2 = 0.08, P U

2 = 0.64, and ε = 0.02. In order to present
different occurrences of the efficient frontier, four different
values are used for δ. Using Lemmas 1 and 2, the efficient
frontiers for these two cycles are drawn in Fig. 4. In the first
case, let δ = 0.1. As a result, P L

1 + P L
2 < 2δ < P U

1 + P U
2 .

The bold curves show that for K < 6ε + 8δ = 0.92, S2
1 � S2

2
and, otherwise, S2

2 � S2
1 . Although the cost of the S2

1 cy-
cle for K < 6ε + 8δ is very high, the cycle time is smaller
than that of S2

2 and this region is still an alternative for the
decision maker. In the second case, let δ = 0.08, which re-
sults in P L

1 + P L
2 ≥ 2δ. As it is seen from the figure, for

all cycle time and cost combinations, S2
2 is preferable to S2

1 .
In the third case, let δ = 1.1. In this case, P U

1 + P U
2 ≤ 2δ

and the only cycle time value that S2
2 can take is equiv-

alent to 6ε + 8δ = 8.92. The minimum cost correspond-
ing to this value of cycle time is found by setting P ∗

i =
P U

i , i = 1,2. On the other hand, when the same process-
ing time settings are used for the S2

1 cycle, the cycle time
becomes 8.76. Since the same processing time values are
used, the cost is the same for both cycles. Thus, we con-
clude that in this case S2

1 � S2
2 . Lastly, let δ = 0.4. Since

P U
1 ≤ 2ε + 4δ and P U

2 ≤ 2ε + 4δ, the cycle time of S2
2

can only be 6ε + 8δ = 3.32 and this cycle time value cor-
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Fig. 4 Different occurrences of the efficient frontier with respect to given parameters

responds to a cost of 1.74. S2
1 cannot take a cost value less

than 1.74. As a result, S2
2 dominates S2

1 unless the cycle time
of S2

1 < 3.32. For cycle time values smaller than 3.32, the
only alternative is the S2

1 cycle.

Akturk et al. (2005) proved that 1-unit cycles need not
be optimal in the whole region even in two-machine robotic
cells producing identical parts with single objective function
when the processing times on the machines are not assumed
to be fixed. They assumed that each part has a set of oper-
ations and both machines are capable of performing all the
operations. Then the processing time of a part on a machine
depends on the operations allocated to that machine, and is
assumed to be a decision variable. The following example
provides a similar result for this study by finding a process-

ing time setting for a 2-unit cycle, in which for the same cy-
cle time value the 2-unit cycle gives the minimum cost. Note
that in a two-machine cell just after loading a part to the sec-
ond machine the robot can either wait in front of the machine
to finish processing of the part or can return back to the in-
put buffer to take another part. This is the only state where
a transition from S2

1 to S2
2 or from S2

2 to S2
1 can happen.

The transition moves of the robot from S2
1 (resp., S2

2 ) to S2
2

(resp., S2
1 ) is denoted as S12 (resp., S21) (Hall et al. 1997).

Under S12 (resp., S21), the robot uses cycle S2
1 (resp., S2

2 )
during processing of part i on the first machine, and cycle
S2

2 (resp., S2
1 ) during processing on the second machine. The

only 2-unit cycle in a two-machine cell is denoted as S12S21

and has the following activity sequence: A0A1A0A2A1A2.
One repetition of this cycle produces two parts. We will de-
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termine the processing times of these two parts on the ma-
chines which can be different from each other. In order to
denote this, let Pij represent the processing time on machine
i for part j where i = 1,2 and j = 1,2. The cycle time for
this cycle can be derived to be:

1

2
max{P11 + P22 + 12ε + 14δ,

P11 + P22 + P12 + 10ε + 10δ,

P11 + P22 + P21 + 10ε + 10δ}.

Example 3 Let us consider the turning operation again and
use the same parameter values for this example as the one
above with δ = 0.1. Let P11 = 0.1, P12 = 0.44, P21 = 0.44,
and P22 = 0.08. With these settings, the cycle time of S12S21

is 0.91 and the total manufacturing cost is 6.325. Since the
cycle time of S2

2 cannot take values less than 0.92 with these
parameters, S12S21 � S2

2 . On the other hand, for K = 0.91,

the minimum cost for S2
1 is 9.214 ⇒ S12S21 � S2

1 .

This example shows that 1-unit cycles need not be opti-
mal, even for two-machines, under the assumptions of this
study. The following theorem determines the regions where
they are optimal. Within the proof of this theorem, we also
provide a lower bound on the cycle time for the regions
where the dominance of the specified two cycles cannot be
attained.

Theorem 2 S2
2 dominates all other robot move cycles when-

ever it is feasible (K ≥ 6ε + 8δ) and S2
1 dominates all other

robot move cycles for K < 6ε + 7δ.

Proof In any feasible robot move cycle, in order to produce
one part the robot must at least perform the following set of
activities: The robot loads and unloads both machines ex-
actly once, (4ε), also takes a part from the input buffer, (ε),
and drops a part to the output buffer, (ε). Then the total load
and unload time is exactly 6ε. As the forward movement,
the robot travels all the way from the input buffer to the
output buffer in some sequence of robot activities, which
takes at least 3δ and in order to return back to the initial
state the robot must travel back to the input buffer which
again takes at least 3δ. Thus, the travel time is at least 6δ.
On the other hand, after loading a part to machine i, the ro-
bot has two options: It either waits in front of the machine,
(Pi ), or travels to another machine to make some other ac-
tivities which takes at least δ time units. Then, for both ma-
chines, we have min{P1, δ}+min{P2, δ}. Furthermore, since
min{P1 +P2, δ} ≤ min{P1, δ}+min{P2, δ}, we have the fol-
lowing:

6ε + 6δ + min{P1 + P2, δ}. (5)

On the other hand, the cycle time of any cycle is greater
than the time between two consecutive loadings of a ma-
chine for which the consecutive loading time is the great-
est. But in order to make a consecutive loading, the robot
must at least perform the following activities: After loading
a part to some machine i, the robot either waits in front of
the machine or makes some other activities which takes at
least Pi amount of time; then, the robot unloads machine i,
(ε); transports the part to machine (i + 1), (δ); loads it, (ε);
returns back to machine (i − 1), (2δ); unloads it, (ε); trans-
ports the part to machine i, (δ); and loads it, (ε). This in total
makes 4ε +4δ +Pi . In order to find the greatest consecutive
loading time we take max{P1,P2}. As a result we have the
following:

4ε + 4δ + max{P1,P2}. (6)

Combining (5) and (6) we can conclude that in order to pro-
duce one part with any robot move cycle, the robot requires
the following amount of time at the least:

max
{
6ε + 6δ + min{P1 + P2, δ},4ε + 4δ + max{P1,P2}

}
.

(7)

Observing this equation we can state that for any given cy-
cle time K , if K < 6ε + 7δ then P1 + P2 < δ. As a con-
sequence, K = 6ε + 6δ + P1 + P2 which is equivalent to
the cycle time of the S2

1 cycle. This concludes that for any
given cycle time K < 6ε + 7δ, S2

1 cycle dominates all other
cycles. On the other hand, if K ≥ 6ε + 7δ, the processing
times can at most be increased (the cost can be reduced)
so that 4ε + 4δ + max{P1,P2} ≤ K . From here, since the
processing times have upper bounds, the processing times
satisfying the minimum cost for a given cycle time K are as
follows, Pi = max{P U

i ,K − 4ε − 4δ}, i = 1,2. Using this
processing time setting, we get a lower bound for the cost
for given cycle time value K . From Lemma 2, this is equiv-
alent to the processing time setting that minimizes the cost
for given K under the S2

2 cycle. However, S2
2 cycle is feasi-

ble for K ≥ 6ε + 8δ. This completes the proof. �

This theorem determines the regions of optimality for the
two 1-unit cycles. It is also shown that for 6ε + 7δ ≤ K <

6ε + 8δ, 1-unit cycles need not be optimal. Note that in this
region S2

2 is not feasible. In order to determine the worst
case performance of the S2

1 cycle inside this region one can
calculate the processing times for the S2

1 cycle according to
Lemma 1 and compare the cost corresponding to this setting
of processing times with the cost corresponding to setting
Pi = max{P U

i ,K − 4ε − 4δ}, i = 1,2, to get a lower bound
for the cost.

The next section is devoted to the three-machine robotic
cells.
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3.2 Three-machine case

Increasing the number of machines in a robotic cell in-
creases the number of feasible robot move cycles, drasti-
cally. More specifically, Sethi et al. (1992) proved that the
number of feasible 1-unit cycles for an m-machine robotic
cell is m!. For a three-machine robotic cell there are a total
of six feasible 1-unit cycles. The robot activity sequences
and the corresponding cycle times for these cycles are pre-
sented in the Appendix. Note that S3

1 cycle is very similar,
with respect to robot activity sequence and the cycle time
formula, to S2

1 cycle which may both be classified as the for-
ward cycles and the S3

6 cycle is very similar, again for similar
properties, to S2

2 cycle both of which may be classified as the
backward cycles. Let us first consider the forward move cy-
cle, S3

1 . Proceeding just as with S2
1 , we can solve the single

criterion problem. But this time we have three variables to
determine, P1, P2, and P3. The following lemma determines
the optimal processing times for the ECP of the S3

1 cycle.

Lemma 3 Let (P ∗
1 ,P ∗

2 ,P ∗
3 ) be the optimal processing times

for the ECP formulated for the S3
1 cycle for a given cycle

time, K . Then this point satisfies the following set of nonlin-
ear equations:

∂f1
(
P ∗

1

) = ∂f2
(
P ∗

2

) = ∂f3
(
P ∗

3

)
,

P ∗
1 + P ∗

2 + P ∗
3 = K − 8ε − 8δ.

After solving,

1. If all of the processing times satisfy their lower and upper
bounds, then the solution found is optimal.

2. Else, if for exactly one index i, i = 1,2,3, P ∗
i violates

its bounds, set it to the bound which is violated. Let P b
i

represent the bound which is violated. Update K such
that K̂ = K − P b

i . In order to determine the remaining
two processing times, proceed just as solving the S2

1 cycle

case with cycle time set to K̂ .
3. Else, if exactly two processing times violate their bounds

and if both violate their lower or both violate their upper
bounds then set them to their own violated bound. That is,
for i, j, k = 1,2,3, i �= j, i �= k, j �= k, if P ∗

i < P L
i and

P ∗
j < P L

j (or P ∗
i > P U

i and P ∗
j > P U

j ), set P ∗
i = P L

i and

P ∗
j = P L

j (P ∗
i = P U

i and P ∗
j = P U

j ). The last processing

time is found as P ∗
k = K − P L

i − P L
j − 8ε − 8δ (P ∗

k =
K − P U

i − P U
j − 8ε − 8δ). Else, if one of the processing

times violates its lower (assume w.l.o.g P ∗
i < P L

i ) and
the other one violates its upper bound (w.l.o.g P ∗

j > P U
j ,

i �= j ) then compare the manufacturing costs found by
the following two alternatives:
(i) Set P ∗

i = P L
i and solve for the remaining two

processing times similar to the S2
1 cycle,

(ii) Set P ∗
j = P U

j and solve for the remaining two

processing times similar to the S2
1 cycle.

4. Else, if all processing times violate their own bounds, let
P b

i represent the violated bound for P ∗
i , i = 1,2,3. Com-

pare the manufacturing costs for the following three al-
ternative solutions:
(i) Set P ∗

1 = P b
1 and solve for the remaining two process-

ing times similar to S2
1 case,

(ii) Set P ∗
2 = P b

2 and solve for the remaining two
processing times similar to S2

1 case,
(iii) Set P ∗

3 = P b
3 and solve for the remaining two

processing times similar to S2
1 case.

Proof The proof is very similar to that for cycle S2
1 and is

omitted here. �

Now let us consider the backward cycle, S3
6 . For this

case, the cycle time K can take values between max{8ε +
12δ,P L

1 + 4ε + 4δ,P L
2 + 4ε + 4δ,P L

3 + 4ε + 4δ} < K <

max{8ε +12δ,P U
1 +4ε +4δ,P U

2 +4ε +4δ,P U
3 +4ε +4δ}.

Lemma 4 Under cycle S3
6 , the optimal processing times for

the ECP are P ∗
i = min{P U

i ,K − 4ε − 4δ}, i = 1,2,3.

Proof The proof is very similar to the S2
2 case and is omitted

here. �

In the following two theorems, we will prove some dom-
inance relations of the type stated in Definition 4. Con-
sidering only the 1-unit cycles, Crama and Van de Klun-
dert (1997) proved that the set of pyramidal permutations
necessarily contains an optimal solution of the problem.
Let A0,Ai1, . . . ,Aik ,Aik+1 , . . . ,Aim denote the activity se-
quence of a 1-unit cycle in an m-machine cell. Then Crama
and Van de Klundert (1997) defines this cycle to be pyrami-
dal if 1 ≤ i1 < · · · < ik = m and m > ik+1 > · · · > im ≥ 1.
The following is an important theorem which proves that the
classical dominance of pyramidal permutations is valid with
the assumptions of this study as well.

Theorem 3 The set of pyramidal cycles is dominating
among 1-unit cycles.

Proof According to Theorem 3 of Crama and Van de Klun-
dert (1997), for any processing time setting there exists
at least one pyramidal cycle which gives a smaller cycle
time than any nonpyramidal cycle. This means that, for any
processing time setting there exists at least one pyramidal
cycle which has the same cost value with the nonpyramidal
cycle but with a smaller cycle time value meaning that the
nonpyramidal cycle is dominated. Note that this processing
time setting need not be optimal for the pyramidal cycle for
this cost value. That is, with another processing time setting
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for the pyramidal cycle a smaller cycle time value can be
found which corresponds to the same cost value. This com-
pletes the proof. �

In three-machine cells, the S3
2 and S3

4 cycles are nonpyra-
midal and the remaining ones are pyramidal. According to
the theorem above these two cycles are dominated and can
be eliminated from further consideration. In the following
theorem we will compare the remaining cycles and deter-
mine the regions where S3

6 dominates the remaining cycles.
In order to prove these, we will select an arbitrary K and find
the optimal processing times for the ECP formulation for
each cycle and compare them with each other. Let P ∗

i (S3
j )

denote the nondominated processing times on machine i for
the robot move cycle S3

j .

Theorem 4 Whenever S3
6 is feasible (K ≥ 8ε + 12δ), it

dominates all of the remaining cycles.

Proof S3
6 cannot take cycle time values less than 8ε + 12δ.

Thus, for an arbitrary selection of K ≥ 8ε + 12δ, we will
compare S3

6 with S3
1 , S3

3 and S3
5 in the following cases re-

spectively:

1. The optimal solution of ECP for S3
1 satisfies K =

8ε + 8δ +P ∗
1 (S3

1)+P ∗
2 (S3

1)+P ∗
3 (S3

1). Optimal process-

ing time values of ECP for the S3
6 corresponding to

this cycle time value can be found by using Lemma 4
as P ∗

i (S3
6) = min{P U

i ,4ε + 4δ + P ∗
1 (S3

1) + P ∗
2 (S3

1) +
P ∗

3 (S3
1)} ≥ P ∗

i (S3
1). Therefore, S3

6 � S3
1 in this region.

2. The optimal solution of ECP for S3
3 satisfies K = 4ε +

4δ+max{P ∗
3 (S3

3),P ∗
1 (S3

3)+4ε+6δ,P ∗
1 (S3

3)+P ∗
2 (S3

3)+
2ε + 2δ}. Optimal processing time values of ECP for the
S3

6 corresponding to this cycle time value can be found
by using Lemma 4 as P ∗

i (S3
6) = min{P U

i ,K−4ε−4δ} =
min{P U

i ,max{P ∗
3 (S3

3),P ∗
1 (S3

3) + 4ε + 6δ,P ∗
1 (S3

3) +
P ∗

2 (S3
3) + 2ε + 2δ}} ≥ P ∗

i (S3
3). Thus, S3

6 � S3
3 for K ≥

8ε + 12δ.
3. As one can observe from the cycle time functions pre-

sented in the Appendix the cycle time function of S3
5

is very similar to that of S3
3 . If we swap the places of

P ∗
1 (S3

3) and P ∗
3 (S3

3) we get one another. Therefore, this
case is identical with case 2, the only difference being the
places of P ∗

1 (S3
3) and P ∗

3 (S3
3). �

This theorem derives a similar result to Theorem 1 for
three-machine cells. According to this theorem, for a given
cell data such as the loading/unloading time and robot trans-
portation time, the backward cycle gives the minimum cost
values for the cycle time values that can be attained by this
cycle. The remaining three cycles, S3

1 , S3
3 , and S3

5 can only
be optimal for the cycle time values that cannot be attained

by S3
6 . Sethi et al. (1992) provided a decision tree on con-

ditions for the robot move cycles to be optimal with any
given cell data considering only the cycle time. However,
the above theorem shows that earlier results are not valid
anymore when the manufacturing cost is considered besides
the cycle time. That is, considering the cycle time as the only
objective hinders the additional insights provided by the cost
of the suggested settings for the cell.

Let us now consider the region for K < 8ε + 12δ. In this
region three cycles remain nondominated. According to the
cycle times of these cycles presented in the Appendix, one
can easily verify that under cycle S3

1 , K ≥ 8ε + 8δ + P L
1 +

P L
2 + P L

3 . Similarly, for cycle S3
3 , K ≥ max{P L

1 + 8ε +
10δ,P L

1 +P L
2 + 6ε + 6δ,P L

3 + 4ε + 4δ}. For cycle S3
5 , K ≥

max{P L
1 +4ε +4δ,P L

2 +P L
3 +6ε +6δ,P L

3 +8ε +10δ}. In
Lemma 3, we determined the optimal processing time val-
ues of the ECP for S3

1 . In the sequel we will prove similar
results for the cycles S3

3 and S3
5 , respectively.

Lemma 5 Under cycle S3
3 , the optimal processing times of

the ECP are found as follows:

1. If P U
1 + P U

2 < K − 6ε − 6δ or P U
2 < 2ε + 4δ then

P ∗
1 = min{P U

1 ,K − 8ε − 10δ}, P ∗
2 = P U

2 , and P ∗
3 =

min{P U
3 ,K − 4ε − 4δ},

2. Otherwise, P ∗
3 = min{P U

3 ,K − 4ε − 4δ}, and P ∗
1 and

P ∗
2 are found by solving the following two equations si-

multaneously: P ∗
1 + P ∗

2 = K − 6ε − 6δ and ∂f1(P
∗
1 ) =

∂f2(P
∗
2 ). After solving, one may get one of the following

cases:
2.1 If both processing times satisfy their own bounds

then the solution found is optimal.
2.2 Else if exactly one of the processing times, P ∗

i , vio-
lates one of its bounds, P b

i , then the optimal solution
is P ∗

i = P b
i and P ∗

j = K − 6ε − 6δ − P b
i , i, j = 1,2,

i �= j .
2.3 Else if one of the processing times (assume P ∗

i ) vi-
olates its lower bound (P L

i ) and the other one (P ∗
j )

violates its upper bound (P U
j ) then the optimal solu-

tion is found by comparing the manufacturing costs of
the following two processing time settings:
(i) P ∗

i = P L
i , P ∗

j = K − 6ε − 6δ − P L
i or

(ii) P ∗
j = P U

j , P ∗
i = K − 6ε − 6δ − P U

j , i, j = 1,2,
i �= j .

Proof In order to find the optimal processing times, the ob-
jective function of the ECP must be replaced by f1(P1) +
f2(P2) + f3(P3) and constraint (1) must be written as
max{P1 + 8ε + 10δ,P1 +P2 + 6ε + 6δ,P3 + 4ε + 4δ} ≤ K .

Under this cycle, the cycle time is bounded as follows:

max
{
P L

1 + 8ε + 10δ,P L
1 + P L

2 + 6ε + 6δ,P L
3 + 4ε + 4δ

}

≤ K
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≤ max
{
P U

1 + 8ε + 10δ,P U
1 + P U

2 + 6ε + 6δ,

P U
3 + 4ε + 4δ

}
. (8)

As a result, the above constraint can be rewritten as the
union of three constraints as follows:

P1 + 8ε + 10δ ≤ K, (9)

P1 + P2 + 6ε + 6δ ≤ K, (10)

P3 + 4ε + 4δ ≤ K. (11)

The Lagrangian for this formulation is the following:

L
(
P ∗, λ∗,μ∗)

= f1
(
P ∗

1

) + f2
(
P ∗

2

) + f3
(
P ∗

3

)

+ μ∗
1

(
P ∗

1 − K + 8ε + 10δ
)

+ μ∗
2

(
P ∗

1 + P ∗
2 − K + 6ε + 6δ

)

+ μ∗
3

(
P ∗

3 − K + 4ε + 4δ
)
.

If we set ∇P (L(P ∗,μ∗)) = 0, we get:

∂f1
(
P ∗

1

) + μ∗
1 + μ∗

2 = 0,

∂f2
(
P ∗

2

) + μ∗
2 = 0,

∂f3
(
P ∗

3

) + μ∗
3 = 0.

We also have μi ≥ 0 and P L
i ≤ Pi ≤ P U

i , ∀i.
From the last equation we get μ∗

3 = −∂f3(P
∗
3 ). Since the

objective is strictly convex and decreasing, −∂f3(P
∗
3 ) > 0

unless P ∗
3 = P U

3 . Thus, constraint (11) must be satisfied as
equality. However, P ∗

3 cannot violate its bounds. From (8),
P L

3 ≤ K−4ε−4δ. As a result, P ∗
3 = min{P U

3 ,K − 4ε − 4δ}.
Now let us consider the following cases:

1. If P U
1 + P U

2 < K − 6ε − 6δ or P U
2 < 2ε + 4δ then

constraint (10) cannot be satisfied as equality. As a
result, μ∗

2 = −∂f2(P
∗
2 ) = 0 ⇒ P ∗

2 = P U
2 . Also since

μ∗
2 = 0, μ∗

1 = −∂f1(P
∗
1 ) > 0 unless P ∗

1 = P U
1 . Thus,

constraint (9) is satisfied as equality. However, P ∗
3 cannot

violate its bounds. From (8), P L
1 ≤ K − 8ε − 10δ. As a

result, P ∗
1 = min{P U

1 ,K − 8ε − 10δ}.
2. Otherwise, μ∗

2 = −∂f2(P
∗
2 ) > 0 unless P ∗

2 = P U
2 . Thus,

in this case constraint (10) is satisfied as equality. As a
result μ∗

1 = ∂f2(P
∗
2 ) − ∂f1(P

∗
1 ) ≥ 0. Thus, we have the

following cases:
2.1. If ∂f1(K − 8ε − 10δ) ≤ ∂f2(2ε + 4δ) then P ∗

1 =
K − 8ε − 10δ and P ∗

2 = 2ε + 4δ.
2.2. Else, solve ∂f1(P

∗
1 ) = ∂f2(P

∗
2 ) and P ∗

1 +P ∗
2 = K −

6ε − 6δ simultaneously to find P ∗
1 and P ∗

2 .
Instead of these two cases we can simply represent the
solution as follows:
Solve ∂f1(P

∗
1 ) = ∂f2(P

∗
2 ) and P ∗

1 + P ∗
2 = K − 6ε − 6δ

simultaneously to find P ∗
1 and P ∗

2 . If any of them violates
its bounds, set that processing time to the violated bound
and find the other one, accordingly. The upper bound for
P ∗

1 in this case is min{P U
1 ,K − 8ε − 10δ}. �

When we compare the cycle time of this cycle with the
S3

5 cycle, we easily see that when we replace P1 with P3 in
one of the cycle times, we get the cycle time of the other one.
Thus, the analysis for these two cycles are identical. Conse-
quently, the proof of the following lemma is very similar to
the one above and will not be presented here.

Lemma 6 Under cycle S3
5 , the optimal processing times of

ECP are found as follows:

1. If P U
3 + P U

2 < K − 6ε − 6δ or P U
2 < 2ε + 4δ then

P ∗
1 = min{P U

1 ,K − 8ε − 10δ}, P ∗
2 = P U

2 and P ∗
3 =

min{P U
3 ,K − 4ε − 4δ},

2. Otherwise, P ∗
1 = min{P U

1 ,K − 4ε − 4δ} and P ∗
3 and

P ∗
2 are found by solving the following two equations si-

multaneously: P ∗
3 + P ∗

2 = K − 6ε − 6δ and ∂f3(P
∗
3 ) =

∂f2(P
∗
2 ). After solving, one may get one of the following

cases:
2.1 If both processing times satisfy their own bounds

then the solution found is optimal.
2.2 Else if exactly one of the processing times, P ∗

i , vio-
lates one of its bounds, P b

i , then the optimal solution
is P ∗

i = P b
i and P ∗

j = K − 6ε − 6δ − P b
i , i, j = 2,3,

i �= j .
2.3 Else if one of the processing times (assume P ∗

i ) vi-
olates its lower bound (P L

i ) and the other one (P ∗
j )

violates its upper bound (P U
j ) then the optimal solu-

tion is found by comparing the manufacturing costs of
the following two processing time settings:
(i) P ∗

i = P L
i , P ∗

j = K − 6ε − 6δ − P L
i or

(ii) P ∗
j = P U

j , P ∗
i = K − 6ε − 6δ − P U

j , i, j = 2,3,
i �= j .

The following is a good example to illustrate the differ-
ences of this study from the earlier ones.

Example 4 Let us consider a three-machine cell and CNC
turning operations with following parameters: ε = 0.02,
δ = 0.1, T = 4, Co = 0.5, a = −1.43423, U1 = 0.2,
U2 = 0.03, U3 = 0.75, P L

1 = 0.1, P U
1 = 1.4, P L

2 = 0.08,

P U
2 = 0.64, P L

3 = 1.1, P U
3 = 2.42. Let us determine the

optimal processing times for the S3
3 cycle with K = 1.8. Ac-

cording to Lemma 5, the optimal processing times for this
cycle can be determined to be as follows: P ∗

1 (S3
3) = 0.74,

P ∗
2 (S3

3) = 0.34, P ∗
3 (S3

3) = 1.32. The corresponding cost for
this setting of processing time is 5.012. When we calcu-
late the cycle time of the S3

6 cycle with this same setting
of processing times, as it is the case in the current litera-
ture, we get K = 1.8. This means that both cycles have the
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same cycle time and cost values and, hence, we are indiffer-
ent between these two cycles. However, if we determine the
optimal processing times for the S3

6 cycle with K = 1.8 ac-

cording to Lemma 4, we get P ∗
1 (S3

6) = 1.4, P ∗
2 (S3

6) = 0.64,
P ∗

3 (S3
6) = 1.32. The corresponding cost for this case is

4.416. This means that both cycles have the same cycle time
value but the minimum cost corresponding this cycle time
value for S3

6 is less than that of S3
3 . Hence, S3

3 is dominated.

This example shows that, with the assumptions of this
study, when comparing the cycles with each other the
processing time settings can be different for each cycle. Ad-
ditionally, if the only criterion was the cycle time, we would
conclude that both S3

3 and S3
6 perform equally well. How-

ever, this example proves that the cost of S3
6 is less than

S3
3 and, hence, they can not be considered as having equal

performance.
Analyzing the remaining three cycles, S3

1 , S3
3 , and S3

5 , we
conclude that there is no general dominance relation among
these cycles, but instead, according to the parameters such
as P L

i , P U
i , ε, and δ, we can find the regions where each of

them dominates the others. This is another result that differ-
entiates this study from the earlier ones, since the decision
tree provided by Sethi et al. (1992) compares all of the 1-
unit cycles with each other and presents the sufficient con-
ditions for each of them to be optimal with any given cell
data, where the only objective is the minimization of the cy-
cle time. In other words, the decision tree spans the whole
feasible region. However, with the assumptions of this study,
only for K < 8ε + 12δ the dominance relations among the
remaining three cycles depend on the cell data.

4 Different cost structures

In this section we will show how different assumptions on
cost structures for the machining cost and the cost of the
robot can be handled. We will present the analysis for the
two-machine cells which can be extended to three-machine
cells in a similar manner. The machining cost can be as-
sumed to be either a function of the exact working time of
the machines or a function of the cycle time. Till now we
assumed the former of these to hold. Additionally, the cost
of the robot could also be considered as an additional cost
component. Although the cost incurred by the robot is rela-
tively small in comparison with the cost incurred by the ma-
chines and the structure for the cost of the robot cannot be
defined easily, we will consider two different cost structures
for the robot in order to show how to handle additional cost
components. In the sequel we will give insights for handling
different cost structures for the machining and robot costs.

4.1 Cost allocated in terms of the cycle time

In this section we assume the machining cost to be a function
of the cycle time, Co · K , where K = 6ε + 6δ + P1 + P2 for
the S2

1 cycle and K = 6ε + 8δ + max{0,P1 − 2ε − 4δ,P2 −
2ε − 4δ} for the S2

2 cycle. On the other hand, in addition to
the machining cost and the tooling cost, we can also con-
sider the cost of the robot as an additional cost component.
Similar to the machining cost, in this section we assume the
cost of the robot to be a function of the cycle time. That is,
a cost is incurred for each unit of time the cell works. The
new cost terms in this case are: R · (6ε + 6δ + P1 + P2)

and R · (6ε + 8δ + max{0,P1 − 2ε − 4δ,P2 − 2ε − 4δ)} for
S2

1 and S2
2 , respectively, where R represents the cost for the

robot for each unit of time the cell works ($/min).
The lower bounds for the processing times are deter-

mined by the constraints dictated by the limited tool life,
the machine power, and the surface roughness. These con-
straints are independent of the machining and the robot
costs. As a result, the lower bounds of the processing times
remain unchanged. On the other hand, the upper bounds
arise from the total manufacturing cost, which is different
from the previous case. Furthermore, as opposed to the pre-
vious case, since the machining and robot costs for the S2

1
and S2

2 cycles are different from each other, the total man-
ufacturing costs are also different leading to different up-
per bounds of the processing times for identical operations
under these two cycles. As we mentioned earlier, the up-
per bound for processing time Pi is the point satisfying
∂fi (P

U
i )

∂Pi
= 0. Note that the total manufacturing cost is as-

sumed to be a convex function, the machining cost and the
robot cost are nondecreasing functions, and the tooling cost
is a nonincreasing function. We also have the following:

∂((Co + R)(6ε + 6δ + P1 + P2))

∂Pi

≥ ∂((Co + R)(6ε + 8δ + max{0,P1 − 2ε − 4δ,P2 − 2ε − 4ε}))
∂Pi

,

∀i.

As a consequence, P U
i (S2

2) ≥ P U
i (S2

1), ∀i, where P U
i (S) is

the upper bound of the processing time under robot move
cycle S. Since the total manufacturing cost is a decreasing
function of the processing time Pi for P L

i ≤ Pi ≤ P U
i , Lem-

mas 1 and 2 are still valid. Additionally, since P U
i (S2

2) ≥
P U

i (S2
1), ∀i, Theorem 1 is also valid which determines the

regions where the S2
1 and S2

2 cycles dominate each other.

4.2 Cost allocated in terms of exact working time

Throughout this study we assumed the machining cost to
be allocated in terms of the exact working time of the ma-
chines, except in Sect. 4.1. In this section we assume that
the cost of the robot is also charged with respect to the exact
robot activity time. That is, if R represents the unit cost for
the robot activity time, then the cost incurred by the robot
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is R · (6ε + 6δ) and R · (6ε + 8δ) under S2
1 and S2

2 cy-
cles, respectively. Note that, during an n-unit cycle, each
machine is loaded and unloaded exactly n times. As a re-
sult, the total load/unload times under all cycles to produce
one part are equivalent to each other. On the other hand, ro-
bot travel times differ among cycles. Comparing 1-unit cy-
cles with each other, the robot travel time is greater under
S2

2 than under S2
1 . As a result, the cost incurred by the ro-

bot is greater under S2
2 than S2

1 . Remember that Lemmas 1
and 2 determined the set of nondominated solutions for S2

1
and S2

2 cycles, respectively, where the total cost function did
not include the cost of the robot. Since the cost function con-
sidered in this section for the robot is independent of the
processing times on the machines, Lemmas 1 and 2 are still
valid. On the other hand, without the robot cost, the remain-
ing parts of the total cost functions for S2

1 and S2
2 cycles

are identical, which means that for the same processing time
values under both cycles, the total cost except the robot cost
is equivalent for these two cycles. Since the total cost func-
tion is assumed to be decreasing for the region under con-
sideration, the cost will not reduce with a greater processing
time. This was the basic property behind the proof of Theo-
rem 1. However, as we include the robot cost, the total cost
functions for the two 1-unit robot move cycles become dif-
ferent from each other and Theorem 1 is no longer valid. Let
fm(P ) represent the machining cost and ft (P ) represent the
tooling cost with processing time vector P . The new break-
point for the region of dominance satisfies the following:

K̄ = 6ε + 6δ + P̂1 + P̂2

= 6ε + 8δ + max{0, P̃1 − 2ε − 4δ, P̃2 − 2ε − 4δ},
fm(P̂1, P̂2) + ft (P̂1, P̂2) + R · (6ε + 6δ)

= fm(P̃1, P̃2) + ft (P̃1, P̃2) + R · (6ε + 8δ)

where P̂i ∈ P ∗
i (S2

1) and P̃i ∈ P ∗
i (S2

2), i = 1,2. If K ≤ K̄

then, S2
1 � S2

2 ; otherwise, S2
2 � S2

1 .
The following is an example showing that the breakpoint

found in Theorem 1 is not valid for this new situation.

Example 5 Let us consider the turning operation for which
the total cost function for the S2

1 cycle can be written as
Co · (P1 + P2) + T1U1P

a1
1 + T2U2P

a2
2 + R · (6ε + 6δ). The

only difference of the cost function for the S2
2 cycle is the

robot cost which is R · (6ε + 8δ) for S2
2 . Let T1 = 6, T2 = 5,

Co = 0.9, R = 2, ε = 0.1, δ = 0.2, U1 = 0.03, U2 = 0.8,
a1 = −0.6, and a2 = −1. According to the given parame-
ters, the upper bounds for the processing times are found to
be P U

1 = 0.266 and P U
2 = 2.108. Let K = 3.3 > 6ε + 8δ =

2.2. Then, if the robot cost is ignored, for K = 3.3, accord-
ing to Theorem 1, S2

2 � S2
1 . With the inclusion of the ro-

bot cost, let P̂1 = 0.152, P̂2 = 1.348, where P̂i ∈ P ∗(S2
1)

and P̃1 = 0.266, P̃2 = 2.1, where P̃i ∈ P ∗(S2
2). As a con-

sequence, F2(S
2
1 , (0.152,1.348)) = F2(S

2
2 , (0.237,2.1)) =

3.3. On the other hand, F1(S
2
1 , (0.152,1.348)) = 8.475 and

F1(S
2
2 , (0.237,2.1)) = 8.832. As a result, in contrast to The-

orem 1, with the presence of robot cost S2
1 � S2

2 , even though
K > 6ε + 8δ.

This example shows that considering the cycle time as the
only performance measure hinders the other characteristics
of the solutions. Although a solution may have a small cy-
cle time value, it may be dominated because of its poor cost
performance. Even the basic results of Sethi et al. (1992) re-
garding the two-machine identical parts robotic cell schedul-
ing problem are not valid when the cost is considered as a
performance measure simultaneously with the cycle time.
This brings additional insights to the problem and provides
flexibility for the decision maker by determining the set of
efficient solutions.

5 Conclusion

In this study we considered robotic cell scheduling with
identical parts in two- and three-machine robotic cells. The
machines in a robotic cell used in metal cutting industries are
predominantly CNC machines so that the machines and the
robot can interact on a real time basis by the help of the cell
controller. These machines are highly flexible. The process-
ing times of the parts on these machines can be controlled by
adjusting the machining conditions such as the speed and the
feed rate. However, adjusting these parameters also affects
the tool life which consequently affects the total manufac-
turing cost. Hence, in this study we considered a bicriteria
robotic cell scheduling problem in which the robot move se-
quence as well as the processing times on the machines are
the decision variables and the cycle time and the total manu-
facturing cost are the performance measures. Since there are
two competing performance measures, instead of a unique
optimal solution a set of nondominated solutions exists for
such problems.

We determined the set of nondominated solutions for
the two 1-unit cycles of two-machine robotic cells in Lem-
mas 1 and 2, and compared these two cycles with each other
in Theorem 1. A similar analysis is performed for three-
machine cells also. Theorem 3 proves that two of the six
1-unit cycles of a three-machine cell are dominated and need
not be considered. Lemmas 3, 4, 5, and 6 determine the non-
dominated set of solutions for the remaining four cycles. By
comparing these with each other, Theorem 4 determines the
regions where S3

6 dominates the rest. Note that no domi-
nance relations exist between the remaining three cycles for
the remaining very small region. We made our analysis for
any strictly convex, differentiable cost function. In Sect. 4
we showed how different assumptions on cost structures can
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be handled. These assumptions include changing the alloca-
tion base for the machining cost and including the cost in-
curred by the robot within the analysis. We showed that if
the machining cost and the cost of the robot are allocated
with respect to the cycle time, earlier results found in this
study are still valid. However, if the robot cost is allocated
with respect to the exact working time of the robot, the re-
gions of optimality for the S2

1 and S2
2 cycles change. This

change is in favor of the S2
1 cycle under which number of

robot moves is less than the number of robot moves under
S2

2 cycle.
As far as the authors know, this is the first study to con-

sider cost objectives in robotic cell scheduling literature. As
a future research direction, the results of this study may
be extended to m-machine cells or cells producing multiple
parts. The complexity of the problem increases drastically in
both cases, since the number of feasible 1-unit cycles in an
m-machine cell is exactly m! and the sequencing of the parts
is also a decision problem for cells producing multiple parts.
In this study we assumed that each part has one operation to
be performed on each machine. Another future research di-
rection is to extend the analysis of this study so that not only
1-unit cycles but all feasible cycles are considered as alter-
natives.

Appendix

Here we will present the robot activity sequences and the cy-
cle times of the six feasible 1-unit cycles for a three-machine
robotic cell.

S3
1 : A0A1A2A3: 8ε + 8δ + P1 + P2 + P3,

S3
2 : A0A2A1A3:
max

{
8ε + 12δ,P1 + 6ε + 8δ,P2 + 4ε + 4δ,

P3 + 6ε + 8δ, (P1 + P2 + P3)/2 + 4ε + 4δ
}
,

S3
3 : A0A1A3A2:
max{P1 + 8ε + 10δ,P1 + P2 + 6ε + 6δ,P3 + 4ε + 4δ},

S3
4 : A0A3A1A2:
max{P1 + P2 + 6ε + 6δ,P2 + 8ε + 12δ,

P2 + P3 + 6ε + 6δ},
S3

5 : A0A2A3A1:
max{P1 + 4ε + 4δ,P2 + P3 + 6ε + 6δ,P3 + 8ε + 10δ},

S3
6 : A0A3A2A1:
max{8ε + 12δ,P1 + 4ε + 4δ,P2 + 4ε + 4δ,

P3 + 4ε + 4δ}.
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