100 research outputs found

    Sequential design of computer experiments for the estimation of a probability of failure

    Full text link
    This paper deals with the problem of estimating the volume of the excursion set of a function f:Rd→Rf:\mathbb{R}^d \to \mathbb{R} above a given threshold, under a probability measure on Rd\mathbb{R}^d that is assumed to be known. In the industrial world, this corresponds to the problem of estimating a probability of failure of a system. When only an expensive-to-simulate model of the system is available, the budget for simulations is usually severely limited and therefore classical Monte Carlo methods ought to be avoided. One of the main contributions of this article is to derive SUR (stepwise uncertainty reduction) strategies from a Bayesian-theoretic formulation of the problem of estimating a probability of failure. These sequential strategies use a Gaussian process model of ff and aim at performing evaluations of ff as efficiently as possible to infer the value of the probability of failure. We compare these strategies to other strategies also based on a Gaussian process model for estimating a probability of failure.Comment: This is an author-generated postprint version. The published version is available at http://www.springerlink.co

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link

    Variational method in relativistic quantum field theory without cutoff

    Get PDF
    The variational method is a powerful approach to solve many-body quantum problems non perturbatively. However, in the context of relativistic quantum field theory (QFT), it needs to meet 3 seemingly incompatible requirements outlined by Feynman: extensivity, computability, and lack of UV sensitivity. In practice, variational methods break one of the 3, which translates into the need to have an IR or UV cutoff. In this letter, I introduce a relativistic modification of continuous matrix product states that satisfies the 3 requirements jointly in 1+1 dimensions. I apply it to the self-interacting scalar field, without UV cutoff and directly in the thermodynamic limit. Numerical evidence suggests the error decreases faster than any power law in the number of parameters, while the cost remains only polynomial.Comment: v2 - major update on the algorithm v1 - 4 pages - see same posting for a longer companion paper "Relativistic continuous matrix product states for quantum fields without cutoff" containing more derivations, context, and explanation
    • …
    corecore