39 research outputs found

    Distribuição e potencial erosivo das chuvas no Estado do Tocantins

    Get PDF
    O objetivo deste trabalho foi determinar os valores de erosividade e gerar os mapas da distribuição espaço-temporal das chuvas no Estado do Tocantins. Analisaram-se séries históricas pluviométricas de 97 postos pluviométricos, compreendendo o período de 1985 a 2009. A erosividade foi estimada por meio de equações nas quais a variável independente foi a precipitação média mensal ou o coeficiente de chuva de Fournier (Rc). A geoestatística foi aplicada para o mapeamento da erosividade tanto na escala mensal quanto na anual. A erosividade anual apresentou valores entre 6.599 e 14.000 MJ mm ha-1 h-1, com auge em dezembro, quando atingiu valores de até 2.800 MJ mm ha-1 h-1 por mês. De maio a setembro, a erosividade apresentou valores inferiores ao crítico, tido como 500 MJ mm ha-1 h-1 por mês. Foram identificadas três regiões prioritárias para ações de planejamento visando a conservação do solo e da água: região centro-oeste do Estado, nas imediações do Parque Estadual do Cantão, com maior erosividade anual; região norte do Estado, especialmente no primeiro trimestre; e região sudeste do Estado, no quarto trimestre

    Rare disease gene association discovery in the 100,000 Genomes Project

    Get PDF
    Up to 80% of rare disease patients remain undiagnosed after genomic sequencing1, with many probably involving pathogenic variants in yet to be discovered disease–gene associations. To search for such associations, we developed a rare variant gene burden analytical framework for Mendelian diseases, and applied it to protein-coding variants from whole-genome sequencing of 34,851 cases and their family members recruited to the 100,000 Genomes Project2. A total of 141 new associations were identified, including five for which independent disease–gene evidence was recently published. Following in silico triaging and clinical expert review, 69 associations were prioritized, of which 30 could be linked to existing experimental evidence. The five associations with strongest overall genetic and experimental evidence were monogenic diabetes with the known β cell regulator3,4 UNC13A, schizophrenia with GPR17, epilepsy with RBFOX3, Charcot–Marie–Tooth disease with ARPC3 and anterior segment ocular abnormalities with POMK. Further confirmation of these and other associations could lead to numerous diagnoses, highlighting the clinical impact of large-scale statistical approaches to rare disease–gene association discovery

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore