3,469 research outputs found

    Monitoring wood decay in poles by the vibroacoustic method

    Get PDF
    Despite recent advances in the development of new materials, wood continues to be used globally for the support of overhead cable networks used by telecommunications and electrical utility companies. As a natural material, wood is subject to decay and will eventually fail, causing disruption to services and danger to public and company personnel. The traditional method of testing poles for decay involves hitting them with a hammer and listening to the sound that results. However, evidence suggests that a large number of poles are replaced unnecessarily and a significant number of poles continue to fail unexpectedly in service. Therefore, a more accurate method for assessing the structural integrity of wooden poles is required. The underlying physical principles behind the 'pole tester's approach' have been identified and used in the development of a decay meter to enable objective monitoring of decay in wooden poles

    Optimal International Asset Allocation with Time-varying Risk

    Get PDF
    This paper examines the optimal allocation each period of an internationally diversified portfolio from the different points of view of a UK and a US investor. We find that investor location affects optimal asset allocation. The presence of exchange rate risk causes the markets to appear not fully integrated and creates a preference for home assets. Domestic equity is the dominant asset in the optimal portfolio for both investors, but the US investor bears less risk than the UK investor, and holds less foreign equity – 20% compared with 25%. Survey evidence indicates actual shares are 6% and 18%, respectively, making the home-bias puzzle more acute for US than UK investors. There would seem to be more potential gains from increased international diversification for the US than the UK investor

    Magnetic ordering, electronic structure and magnetic anisotropy energy in the high-spin Mn10_{10} single molecule magnet

    Full text link
    We report the electronic structure and magnetic ordering of the single molecule magnet [Mn10_{10}O4_{4}(2,2'-biphenoxide)4_{4}Br12_{12}]4^{4-} based on first-principles all-electron density-functional calculations. We find that two of the ten core Mn atoms are coupled antiferromagnetically to the remaining eight, resulting in a ferrimagnetic ground state with total spin S=13. The calculated magnetic anisotropy barrier is found to be 9 K in good agreement with experiment. The presence of the Br anions impact the electronic structure and therefore the magnetic properties of the 10 Mn atoms. However, the electric field due to the negative charges has no significant effect on the magnetic anisotropy.Comment: 4 pages, submitted to PR

    Holographic injection locking of a broad area laser diode via a photorefractive thin-film device

    Get PDF
    We demonstrate locking of a high power broad area laser diode to a single frequency using holographic feedback from a photorefractive polymer thin-film device for the first time. A four-wave mixing setup is used to generate feedback for the broad area diode at the wavelength of the single frequency source (Ti:Sapphire laser) while the spatial distribution adapts to the preferred profile of the broad area diode. The result is an injection-locked broad area diode emitting with a linewidth comparable to the Ti:Sapphire laser

    Generalised permutation branes

    Full text link
    We propose a new class of non-factorising D-branes in the product group GxG where the fluxes and metrics on the two factors do not necessarily coincide. They generalise the maximally symmetric permutation branes which are known to exist when the fluxes agree, but break the symmetry down to the diagonal current algebra in the generic case. Evidence for the existence of these branes comes from a Lagrangian description for the open string world-sheet and from effective Dirac-Born-Infeld theory. We state the geometry, gauge fields and, in the case of SU(2)xSU(2), tensions and partial results on the open string spectrum. In the latter case the generalised permutation branes provide a natural and complete explanation for the charges predicted by K-theory including their torsion.Comment: 33 pages, 6 figures, v2: Extended discussion of K-theory interpretation of our branes for products of higher rank groups in the conclusions; v3: Correction of formula (35) and adjustment of the discussion below equation (45) (no change of result). Footnote 9 points out a previously unnoticed subtlety and provides a reference to a more detailed discussio

    Charges of twisted branes: the exceptional cases

    Full text link
    The charges of the twisted D-branes for the two exceptional cases (SO(8) with the triality automorphism and E_6 with charge conjugation) are determined. To this end the corresponding NIM-reps are expressed in terms of the fusion rules of the invariant subalgebras. As expected the charge groups are found to agree with those characterising the untwisted branes.Comment: 15 page

    Character Expansion Methods for Matrix Models of Dually Weighted Graphs

    Get PDF
    We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large NN limit of the Itzykson-Zuber formula. We illustrate and check our methods by analyzing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphs possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problem of phase transitions from random to flat lattices.Comment: 22 pages, harvmac.tex, pictex.tex. All diagrams written directly into the text in Pictex commands. (Two minor math typos corrected. Acknowledgements added.

    Statefinder and Om Diagnostics for Interacting New Holographic Dark Energy Model and Generalized Second Law of Thermodynamics

    Full text link
    In this work, we have considered that the flat FRW universe is filled with the mixture of dark matter and the new holographic dark energy. If there is an interaction, we have investigated the natures of deceleration parameter, statefinder and OmOm diagnostics. We have examined the validity of the first and generalized second laws of thermodynamics under these interactions on the event as well as apparent horizon. It has been observed that the first law is violated on the event horizon. However, the generalized second law is valid throughout the evolution of the universe enveloped by the apparent horizon. When the event horizon is considered as the enveloping horizon, the generalized second law is found to break down excepting at late stage of the universe.Comment: 9 pages, 13 figure
    corecore