We consider generalized one-matrix models in which external fields allow
control over the coordination numbers on both the original and dual lattices.
We rederive in a simple fashion a character expansion formula for these models
originally due to Itzykson and Di Francesco, and then demonstrate how to take
the large N limit of this expansion. The relationship to the usual matrix model
resolvent is elucidated. Our methods give as a by-product an extremely simple
derivation of the Migdal integral equation describing the large N limit of
the Itzykson-Zuber formula. We illustrate and check our methods by analyzing a
number of models solvable by traditional means. We then proceed to solve a new
model: a sum over planar graphs possessing even coordination numbers on both
the original and the dual lattice. We conclude by formulating equations for the
case of arbitrary sets of even, self-dual coupling constants. This opens the
way for studying the deep problem of phase transitions from random to flat
lattices.Comment: 22 pages, harvmac.tex, pictex.tex. All diagrams written directly into
the text in Pictex commands. (Two minor math typos corrected.
Acknowledgements added.