11 research outputs found

    Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems

    Get PDF
    Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA. Soil and freshwater protist communities were more similar to each other than to marine protist communities, with virtually no overlap of Operational Taxonomic Units (OTUs) between terrestrial and marine habitats. Soil protists showed higher γ diversity than aquatic samples. Differences in taxonomic composition of the communities led to changes in a functional diversity among ecosystems, as expressed in relative abundance of consumers, phototrophs and parasites. Phototrophs (eukaryotic algae) dominated freshwater systems (49% of the sequences) and consumers soil and marine ecosystems (59% and 48%, respectively). The individual functional groups were composed of ecosystem- specific taxonomic groups. Parasites were equally common in all ecosystems, yet, terrestrial systems hosted more OTUs assigned to parasites of macro-organisms while aquatic systems contained mostly microbial parasitoids. Together, we show biogeographic patterns of protist diversity across major ecosystems on Earth, preparing the way for more focused studies that will help understanding the multiple roles of protists in the biosphere

    In situ prey selection of mixotrophic and heterotrophic flagellates in Antarctic oligotrophic lakes: An analysis of the digestive vacuole content

    No full text
    We investigated the selective predation of mixotrophic and heterotrophic flagellates (MF and HF) on different heterotrophic prokaryote phylotypes (HPP; Bacteria + Archaea) living in natural assemblages from oligotrophic Antarctic lakes. In situ prey preference was analyzed for the first time on different mixotrophic taxa (Pseudopedinella sp., Ochromonas-like cells, Chrysophyceae >5 μm). The relative abundances of seven different HPP hybridized by CARD-FISH (catalyzed reporter deposition-fluorescent in situ hybridization) in natural community were compared with the proportions of hybridized cells inside digestive vacuoles. Our results showed some general trends to selectivity over some HPP. Alphaproteobacteria and Betaproteobacteria were the most abundant groups, and strikingly, a negative selection trend was detected in most samples by all bacterivorous protists. In contrast, for Actinobacteria a positive selection trend was observed in most samples, whereas Bacteroidetes seemed to be randomly preyed upon. Interestingly, similar prey preferences were observed in all bacterivorous flagellates. Our results suggest that phylogenetic affiliation determines part of the process of prey selection by protists in these lakes. Nevertheless, other features, such as cell size, morphology and the presence of the S-layer, might also significantly contribute to prey selectivity on the HPP. © 2012 The Author 2012. Published by Oxford University Press. All rights reserved.Fil:Queimaliños, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Schiaffino, M.R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Izaguirre, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Unrein, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Zooplankton succession during extraordinary drought-flood cycles: A case study in a South American floodplain lake

    Get PDF
    We examined the zooplankton abundance and composition of Laguna Grande, a floodplain wetland of the Lower Paraná Basin (Argentina), during an extraordinary drought-flood cycle that affected both the environment and the biological conditions of the lake. Low waters were characterised by remarkably high conductivities and pH values, and high phytoplankton and bacterioplankton abundances with cyanobacterial blooms, while high waters showed opposite features. In relation to zooplankton, the mean abundances of all the taxonomic groups (rotifers, cladocerans, copepods, ciliates, and heterotrophic nanoflagellates) were slightly higher at low waters. Major changes were observed in the specific composition of metazooplankton: the euryhaline species assemblage that dominated in the dry warm period was replaced by several oligohaline littoral and planktonic species characteristic of the Paraná River Basin, when the water level rose. Mean species richness values at high waters doubled those of low waters and were directly correlated to water depth. Most of the rotifers of the genus Brachionus and the cladoceran Moina micrura switched from parthenogenetic to sexual reproduction during low waters, as a response to a harsh environment and crowding. We suggest that the main changes in the environmental conditions in this eutrophic floodplain lake are driven by the hydrology, which regulates the zooplankton succession. The herein described shifts in the zooplankton structure and dynamics of Laguna Grande over an extraordinary drought-flood cycle contribute to the understanding of the processes that might occur under the scenarios predicted by climate change models. © 2011 Elsevier GmbH.Fil:Chaparro, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Schiaffino, M.R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:O'Farrell, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Heterotrimeric G proteins demonstrate differential sensitivity to beta-arrestin dependent desensitization

    No full text
    G15 is a heterotrimeric G protein of the Gq/11 family. In this study, we describe its exceptional poor sensitivity to the general regulatory mechanism of G protein-coupled receptor (GPCR) desensitization. Enhancing beta2 adrenergic receptor desensitization by arrestin overexpression, did not affect signalling to G15. Similarly, increased levels of arrestin did not affect G15 signalling triggered by the activation of V2 vasopressin and delta opioid receptors. Furthermore, co-immunoprecipitation experiments showed that G15 alpha subunit (as opposed to Galphaq and Galphas) is recruited to a V2 vasopressin receptor mutant that is constitutively desensitized by beta-arrestin. Interestingly, co-expression of Galpha15 partially rescued cell surface localization and signalling capabilities of the same mutant receptor and reduced beta2 adrenergic receptor internalization. Taken together, these findings provide evidence for a novel mechanism whereby GPCR desensitization can be bypassed and G15 can support sustained signalling in cells chronically exposed to hormones or neurotransmitter

    Algal biomass and pigments along a latitudinal gradient in Victoria Land lakes, East Antarctica

    No full text
    It is generally accepted that Antarctic terrestrial diversity decreases as latitude increases, but latitudinal patterns of several organisms are not always as clear as expected. The Victoria Land region is rich in lakes and ponds and spans 8 degrees of latitude that encompasses gradients in factors such as solar radiation, temperature, ice cover and day length. An understanding of the links between latitudinally driven environmental and biodiversity changes is essential to the understanding of the ecology and evolution of Antarctic biota and the formulation of hypotheses about likely future changes in biodiversity. As several studies have demonstrated that photosynthetic pigments are an excellent, although underused, tool for the study of lacustrine algal communities, the aim of the present study was to investigate variations in algal biomass and biodiversity across the latitudinal gradient of Victoria Land using sedimentary pigments. We test the hypothesis that the biodiversity of freshwater environments decreases as latitude increases. On the basis of our results, we propose using the number of sedimentary pigments as a proxy for algal diversity and the sum of chlorophyll a and bacteriochlorophyll a with their degradation derivatives as an index of biomass. Overall, our data show that biomass and diversity decrease as latitude increases but local environmental conditions, in particular, natural levels of eutrophy, can affect both productivity and diversity

    Molecular genetics of cardiomyopathies and myocarditis

    No full text
    corecore