101 research outputs found

    Effective Finite Temperature Partition Function for Fields on Non-Commutative Flat Manifolds

    Get PDF
    The first quantum correction to the finite temperature partition function for a self-interacting massless scalar field on a DD-dimensional flat manifold with pp non-commutative extra dimensions is evaluated by means of dimensional regularization, suplemented with zeta-function techniques. It is found that the zeta function associated with the effective one-loop operator may be nonregular at the origin. The important issue of the determination of the regularized vacuum energy, namely the first quantum correction to the energy in such case is discussed.Comment: amslatex, 14 pages, to appear in Phys. Rev.

    Casimir energy-momentum tensor for a brane in de Sitter spacetime

    Get PDF
    Vacuum expectation values of the energy-momentum tensor for a conformally coupled scalar field is investigated in de Sitter (dS) spacetime in presence of a curved brane on which the field obeys the Robin boundary condition with coordinate dependent coefficients. To generate the corresponding vacuum densities we use the conformal relation between dS and Rindler spacetimes and the results previously obtained by one of the authors for the Rindler counterpart. The resulting energy-momentum tensor is non-diagonal and induces anisotropic vacuum stresses. The asymptotic behaviour of this tensor is investigated near the dS horizon and the boundary.Comment: 10 pages, no figur

    Interacting Dark Energy in Ho\v{r}ava-Lifshitz Cosmology

    Full text link
    In the usual Ho\v{r}ava-Lifshitz cosmological models, the scalar field is responsible for dark matter. Using an additional scalar field, Saridakis \cite{sari} has formulated Ho\v{r}ava-Lifshitz cosmology with an effective dark energy sector. In the paper \cite{sari} the scalar fields do not interact with each other, here we extend this work to the interacting case, where matter scalar field ϕ\phi interact with dark energy scalar field σ\sigma. We will show that in contrast with \cite{sari}, where σ\sigma-filed is absent, we can obtain wdeff<1w_d ^{\rm eff}<-1, that is we result to an effective dark energy presenting phantom behaviour. This behaviour is pure effect of the interaction.Comment: 10 pages, no figur

    Interacting Three Fluid System and Thermodynamics of the Universe Bounded by the Event Horizon

    Full text link
    The work deals with the thermodynamics of the universe bounded by the event horizon. The matter in the universe has three constituents namely dark energy, dark matter and radiation in nature and interaction between then is assumed. The variation of entropy of the surface of the horizon is obtained from unified first law while matter entropy variation is calculated from the Gibbss' law. Finally, validity of the generalized second law of thermodynamics is examined and conclusions are written point wise.Comment: 7 page

    Multiple Λ\LambdaCDM cosmology with string landscape features and future singularities

    Full text link
    Multiple Λ\LambdaCDM cosmology is studied in a way that is formally a classical analog of the Casimir effect. Such cosmology corresponds to a time-dependent dark fluid model or, alternatively, to its scalar field presentation, and it motivated by the string landscape picture. The future evolution of the several dark energy models constructed within the scheme is carefully investigated. It turns out to be almost always possible to choose the parameters in the models so that they match the most recent and accurate astronomical values. To this end, several universes are presented which mimick (multiple) Λ\LambdaCDM cosmology but exhibit Little Rip, asymptotically de Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far future, with disintegration of all bound objects in the cases of Big Rip, Little Rip and Pseudo-Rip cosmologies.Comment: LaTeX 11 pages, 10 figure

    Crack propagation and fracture in silicon wafers under thermal stress

    Get PDF
    The behaviour of microcracks in silicon during thermal annealing has been studied using in situ X-ray diffraction imaging. Initial cracks are produced with an indenter at the edge of a conventional Si wafer, which was heated under temperature gradients to produce thermal stress. At temperatures where Si is still in the brittle regime, the strain may accumulate if a microcrack is pinned. If a critical value is exceeded either a new or a longer crack will be formed, which results with high probability in wafer breakage. The strain reduces most efficiently by forming (hhl) or (hkl) crack planes of high energy instead of the expected low-energy cleavage planes like {111}. Dangerous cracks, which become active during heat treatment and may shatter the whole wafer, can be identified from diffraction images simply by measuring the geometrical dimensions of the strain-related contrast around the crack tip. Once the plastic regime at higher temperature is reached, strain is reduced by generating dislocation loops and slip bands and no wafer breakage occurs. There is only a small temperature window within which crack propagation is possible during rapid annealing

    Dark energy from conformal symmetry breaking

    Full text link
    The breakdown of conformal symmetry in a conformally invariant scalar-tensor gravitational model is revisited in the cosmological context. Although the old scenario of conformal symmetry breaking in cosmology containing scalar field has already been used in many earlier works, it seems that no special attention has been paid for the investigation on the possible connection between the breakdown of conformal symmetry and the existence of dark energy. In this paper, it is shown that the old scenario of conformal symmetry breaking in cosmology, if properly interpreted, not only has a potential ability to describe the origin of dark energy as a symmetry breaking effect, but also may resolve the coincidence problem.Comment: 11 pages, minor revision, published online in EPJ

    Holographic dark energy with time varying c2c^2 parameter

    Full text link
    We consider the holographic dark energy model in which the model parameter c2c^2 evolves slowly with time. First we calculate the evolution of EoS parameter as well as the deceleration parameter in this generalized version of holographic dark energy (GHDE). Depending on the parameter c2c^2, the phantom regime can be achieved earlier or later compare with original version of holographic dark energy. The evolution of energy density of GHDE model is investigated in terms of parameter c2c^2. We also show that the time-dependency of c2c^2 can effect on the transition epoch from decelerated phase to accelerated expansion. Finally, we perform the statefinder diagnostic for GHDE model and show that the evolutionary trajectories of the model in srs-r plane are strongly depend on the parameter c2c^2.Comment: 16 pages, 4 figures, accepted by Astrophys Space Sc
    corecore