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Abstract

Vacuum expectation values of the energy–momentum tensor for a conformally coupled scalar field are investigated in
(dS) spacetime in presence of a curved brane on which the field obeys the Robin boundary condition with coordinate d
coefficients. To generate the corresponding vacuum densities we use the conformal relation between dS and Rindler s
and the results previously obtained by one of the authors for the Rindler counterpart. The resulting energy–momentu
is non-diagonal and induces anisotropic vacuum stresses. The asymptotic behaviour of this tensor is investigated n
horizon and the boundary.
 2004 Elsevier B.V.

PACS: 03.70.+k; 11.10.Kk

1. Introduction

de Sitter (dS) spacetime is the maximally symmetric solution of Einstein’s equation with a positive cosmo
constant. Recent astronomical observations of supernovae and cosmic microwave background [1] indi
the universe is accelerating and can be well approximated by a world with a positive cosmological con
the universe would accelerate indefinitely, the standard cosmology leads to an asymptotic dS universe.
spacetime plays an important role in the inflationary scenario, where an exponentially expanding approx
dS spacetime is employed to solve a number of problems in standard cosmology. The quantum field th
dS spacetime is also of considerable interest. In particular, the inhomogeneities generated by fluctuat
quantum field during inflation provide an attractive mechanism for the structure formation in the universe. A
motivation for investigations of dS based quantum theories is related to the recently proposed holographi
between quantum gravity on dS spacetime and a quantum field theory living on boundary identified w
timelike infinity of dS spacetime [2].
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The one of most striking macroscopic manifestations of quantum properties is the Casimir effect. The p
of reflecting boundaries alters the zero-point modes of a quantized field, and results in the shifts in the
expectation values of quantities quadratic in the field, such as the energy density and stresses. In particula
forces arise acting on constraining boundaries. The particular features of these forces depend on the
the quantum field, the type of spacetime manifold, the boundary geometries and the specific boundary co
imposed on the field. Since the original work by Casimir in 1948 [3] many theoretical and experimental
have been done on this problem (see, e.g., [4–13] and references therein). Many different approaches h
used: mode summation method, Green function formalism, multiple scattering expansions, heat-kernel se
function regularization technique, etc. Recently new methods are developed for the Casimir energy calcul
given background fields [14–16].

The Casimir effect can be viewed as a polarization of vacuum by boundary conditions. The interac
fluctuating quantum fields with background gravitational fields give rise to another type of vacuum polar
(see, for instance, [17,18]). Here we will study an example where both types of polarizations are present.
we evaluate the vacuum expectation values for the energy–momentum tensor of a conformally couple
field on background of(D + 1)-dimensional dS spacetime when a curved brane is present (for investigati
the Casimir energy in braneworld models with dS branes see Refs. [19–21]). As a brane we takeD-dimensional
hypersurface which is the conformal image of a plate moving with constant proper acceleration in the
spacetime. We will assume that the field is prepared in the state conformally related to the Fulling–Rindler
in the Rindler spacetime. To generate the vacuum expectation values in dS bulk, we use the conforma
between dS and Rindler spacetimes and the results from [22] for the corresponding Rindler problem wit
boundary conditions. Previously this method has been used in [23] to derive the vacuum stress on parallel
a scalar field with Dirichlet boundary conditions in de Sitter spacetime and in Ref. [24] to investigate the v
characteristics of the Casimir configuration on background of conformally flat brane-world geometries for m
scalar field with Robin boundary conditions on plates.

The present Letter is organized as follows. In the next section the geometry of our problem and the co
relation between dS and Rindler spacetimes are discussed. The results are presented for the vacuum e
values of the energy–momentum tensor for a scalar field induced by a plate uniformly accelerated
the Fulling–Rindler vacuum. In Section 3, by using the formula relating the renormalized energy–mom
tensors for conformally related problems in combination with the appropriate coordinate transformati
derive expressions for the vacuum energy–momentum tensor in dS space. The main results are rement
summarized in Section 4.

2. Conformal relation between dS and Rindler problems

Consider a conformally coupled massless scalar fieldϕ(x) satisfying the equation

(1)
(∇l∇ l + ζR

)
ϕ(x)= 0, ζ = D − 1

4D
,

on background of a(D + 1)-dimensional dS spacetime. In Eq. (1),∇l is the operator of the covariant derivativ
andR is the Ricci scalar for the corresponding metricgik . In static coordinatesxi = (t, r, θ, θ2, . . . , θD−2, φ) dS
metric has the form

(2)ds2
dS= gik dx

i dxk =
(

1− r2

α2

)
dt2 − dr2

1− r2/α2
− r2dΩ2

D−1,

wheredΩ2
D−1 is the line element on the(D − 1)-dimensional unit sphere in Euclidean space, and the param

α defines the dS curvature radius. Note thatR = D(D − 1)/α2. We will assume that the field satisfies the mix
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(3)
(
A+Bnl∇l

)
ϕ(x)= 0, x ∈ S,

on the hypersurfaceS, nl is the normal to this surface,nlnl = −1 (the form of the hypersurface will be specifi
below, see Eq. (8)). The results in the following will depend on the ratio of Robin coefficientsA andB. However,
to keep the transition to the Dirichlet and Neumann cases transparent we will use the form (3). Our main
in the present Letter is to investigate the vacuum expectation value (VEV) of the energy–momentum te
the fieldϕ(x) induced by the hypersurfaceS. The presence of boundaries modifies the spectrum of the zero-
fluctuations compared to the case without boundaries and results in the shift in the VEV’s of physical qu
such as vacuum energy density and stresses. This is the well-known Casimir effect.

To make maximum use of the flat spacetime calculations, first of all let us present the dS line e
in the form conformally related to the Rindler metric. With this aim we make the coordinate transform
xi → x ′ i = (τ, ξ,x′), x′ = (x ′2, . . . , x ′D) (see Ref. [17] for the caseD = 3)

τ = t

α
, ξ =

√
α2 − r2

Ω
, x ′2 = r

Ω
sinθ cosθ2, . . . ,

x ′D−2 = r

Ω
sinθ sinθ2 · · ·sinθD−3 cosθD−2,

(4)x ′D−1 = r

Ω
sinθ sinθ2 · · ·sinθD−2 cosφ, x ′D = r

Ω
sinθ sinθ2 · · ·sinθD−2 sinφ,

with the notation

(5)Ω = 1− r

α
cosθ.

Under this coordinate transformation the dS line element takes the form

(6)ds2
dS= g′

ik dx
′ i dx ′ k =Ω2(ξ2 dτ2 − dξ2 − dx′2).

In this form the dS metric is manifestly conformally related to the Rindler spacetime with the line elementds2
R:

(7)ds2
dS=Ω2ds2

R, ds2
R = gR

ik dx
′ i dx ′ k = ξ2 dτ2 − dξ2 − dx′2, g′

ik =Ω2gR
ik.

By using the standard transformation formula for the vacuum expectation values of the energy–momentu
in conformally related problems (see, for instance, [17]), we can generate the results for dS spacetime
corresponding results for the Rindler spacetime. In this Letter as a Rindler counterpart we will take the
energy–momentum tensor induced by an infinite plate moving by uniform proper acceleration through the F
Rindler vacuum. We will assume that the plate is located in the right Rindler wedge and has the coordinatξ = a.
Observe that in coordinatesxi the boundaryξ = a is presented by the hypersurface

(8)
√
α2 − r2 = a

(
1− r

α
cosθ

)

in dS spacetime. As a boundaryS in Eq. (3) we will take this hypersurface. In Fig. 1 we have plotted the sectio
dS spacetime for fixed(t, θ2, . . . , θD−2, φ). The corresponding surface is embedded into 3D Euclidean space
coordinates(x, y, z)= ((r/α)cosθ, (r/α)sinθ, z) and is defined by the equation

(9)x2 + y2 + z2 = 1, z� 0.

In coordinates(x, y, z) the boundary (8) is defined by the intersection of the surface (9) with the cylinder

(10)

(
x − a2

α

1+ a2
α

)2

+ y2

1+ a2
α

= 1

(1+ a2
α)

2 , aα = a

α
.
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Fig. 1. The section of dS spacetime for fixed(t, θ2, . . . , θD−2,φ) embedded into 3D Euclidean space with coordinates(x, y, z) =
((r/α)cosθ, (r/α)sinθ, z) and described by Eq. (9). The curves on this surface correspond to the boundary (8) withaα = 0.5,1,2.

The corresponding curves on the surface (9) are plotted in Fig. 1 for valuesaα = 0.5, 1, 2. In the limitaα → 0 the
curves tend to the dS horizon presented by the circle(r/α = 1, z = 0). For all values ofaα the hypersurfaces (10
touch the dS horizon at(r, θ)= (α,0).

The expectation values of the energy–momentum tensor induced by the presence of an infinite plane b
moving with uniform acceleration through the Fulling–Rindler vacuum were investigated by Candelas and D
[25] for a conformally coupled 4D Dirichlet and Neumann massless scalar and electromagnetic fields. In th
the region of the right Rindler wedge to the right of the barrier is considered. In Ref. [22] we have inves
the Wightman function and the VEV of the energy–momentum tensor for a massive scalar field with g
curvature coupling parameter, satisfying the Robin boundary conditions on an infinite plane in an arbitrary
of spacetime dimensions. Both regions, including the one between the barrier and Rindler horizon, are co
Recently, the total Casimir energy in this problem is investigated [26] by using the zeta function regular
technique. The expectation values of the energy–momentum tensor for a scalar fieldϕR(x

′) in the Fulling–Rindler
vacuum can be presented in the form of the sum

(11)〈0R|T k
i

[
gR
lm,ϕR

]|0R〉 = 〈0̃R|T k
i

[
gR
lm,ϕR

]|0̃R〉 + 〈
T k
i

[
gR
lm,ϕR

]〉(b)
,

where|0R〉 and|0̃R〉 are the amplitudes for the vacuum states in the Rindler space in presence and absen
plate, respectively, and〈T k

i [gR
lm,ϕR]〉(b) is the part of the vacuum energy–momentum tensor induced by the

Note that the state|0̃R〉 corresponds to the standard Fulling–Rindler vacuum. In the case of a conformally co
massless scalar field, for the part without boundaries one has (see Ref. [25] for the caseD = 3 and Ref. [22] for an
arbitraryD)

(12)〈0̃R|T k
i

[
gR
lm,ϕR

]|0̃R〉 = aDξ
−D−1

2D−1πD/2Γ (D/2)
diag

(
−1,

1

D
, . . . ,

1

D

)
,

with the notation

(13)aD =
∞∫

0

ωD dω

e2πω + (−1)D

lm∏
l=1

[(
D − 1− 2l

2ω

)2

+ 1

]
,
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wherelm = D/2 − 1 for evenD > 2 andlm = (D − 1)/2 for oddD > 1, and the value for the product overl is
equal to 1 forD = 1,2,3. For a scalar fieldϕR(x

′), satisfying the mixed boundary condition

(14)
(
AR +BRn

′ l
R∇′

l

)
ϕR(x

′)= 0, ξ = a, n′ l
R = δl1,

with constantsAR, BR, the boundary induced part in the regionξ > a is defined by the formula [22]

(15)
〈
T k
i

[
gR
lm,ϕR

]〉(b) = −δki

2D−2π(D+1)/2Γ ((D − 1)/2)

∞∫
0

dk kD−1

∞∫
0

dω
Īω(ka)

K̄ω(ka)
F (i)

[
Kω(kξ)

]
,

where the functionsF(i)[g(z)] for i = 0,1 have the form

F (0)[g(z)] =
(

1

2
− 2ζ

)(
dg(z)

dz

)2

+ ζ

z

d

dz
g2(z)+

[
1

2
− 2ζ +

(
1

2
+ 2ζ

)
ω2

z2

]
g2(z),

(16)F (1)[g(z)] = −1

2

(
dg(z)

dz

)2

− ζ

z

d

dz
g2(z)+ 1

2

(
1− ω2

z2

)
g2(z),

and the functionsF (i)[g(z)] for i = 2, . . . ,D are determined by the zero trace condition for the energy–mome
tensor,

(17)F (i)
[
g(z)

] = − 1

D − 1

{
F (0)[g(z)] + F (1)[g(z)]}, i = 2, . . . ,D.

In Eq. (15),Iω(z) andKω(z) are the Bessel modified functions and for a given functionf (z) we use the notation

(18)f̄ (z)=ARf (z)+BRzf
′(z).

The expression for the boundary part of the vacuum energy–momentum tensor in the regionξ < a is obtained from
formula (15) by replacementsIω →Kω, Kω → Iω.

3. Vacuum energy–momentum tensor in dS bulk

To find the VEV’s induced by the surface (8) in dS spacetime, first we will consider the corresponding qu
in the coordinates(τ, ξ,x′) with metric (6). These quantities can be found from the corresponding results
Rindler spacetime by using the standard transformation formula for the conformally related problems [17]

(19)〈0dS|T k
i [g′

lm,ϕ]|0dS〉 =Ω−D−1〈0R|T k
i

[
gR
lm,ϕR

]|0R〉 + 〈
T k
i [g′

lm,ϕ]〉(an),
where the second summand on the right is determined by the trace anomaly and is related to the diverge
the corresponding effective action:

(20)
〈
T k
i [g′

lm,ϕ]〉(an) = 2g′ kl δ

δg′ il (x)
Wdiv[g′

mn,ϕ].
Note that in odd spacetime dimensions the conformal anomaly is absent and the corresponding anom
vanishes:

(21)
〈
T k
i [g′

lm,ϕ]〉(an) = 0 for evenD.

For an odd number of spatial dimensions the anomaly part in dS spacetime has the form

(22)
〈
T k
i [g′

lm,ϕ]〉(an) = bD

αD+1 δ
i
k,
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with the numerical coefficientbD. In D = 3 one hasb3 = 1/960π2 [17].
The formulae given above allow us to present the dS VEV’s in the decomposed form similar to Eq. (11)

(23)〈0dS|T k
i [g′

lm,ϕ]|0dS〉 = 〈0̃dS|T k
i [g′

lm,ϕ]|0̃dS〉 + 〈
T k
i [g′

lm,ϕ]〉(b),
where〈0̃dS|T k

i [g′
lm,ϕ]|0̃dS〉 is the expectation value in dS spacetime without boundaries and the part〈T k

i [g′
lm,ϕ]〉(b)

is induced by the hypersurface (8). Conformally transforming the Rindler results one finds

(24)〈0̃dS|T k
i [g′

lm,ϕ]|0̃dS〉 =Ω−D−1〈0̃R|T k
i

[
gR
lm,ϕR

]|0̃R〉 + 〈
T k
i [g′

lm,ϕ]〉(an),
(25)

〈
T k
i [g′

lm,ϕ]〉(b) = Ω−D−1〈T k
i

[
gR
lm,ϕR

]〉(b)
.

Under the conformal transformationg′
ik =Ω2gR

ik , theϕR field will change by the rule

(26)ϕ(x ′)=Ω(1−D)/2ϕR(x
′),

where the conformal factor is given by expression (5). Now by comparing boundary conditions (14) and
taking into account Eq. (26), one obtains the relation between the coefficients in the boundary conditions:

(27)A= 1

Ω

(
AR + D − 1

2
BRn

l∇lΩ

)
, B = BR, x ∈ S.

To evaluate the expressionnl∇lΩ we need the components of the normal toS in coordinatesxi . They can be found
by transforming the componentsn′ l = δl1/Ω in coordinatesx ′ i :

(28)nl =
(

0,
a

α

(
cosθ − r

α

)
,− a

αr
sinθ,0, . . . ,0

)
.

Now it can be easily seen thatnl∇lΩ = −√
α2 − r2/α2 and, hence, the relation between the Robin coefficien

the Rindler and dS problems takes the form

(29)A= aAR√
α2 − r2

− D − 1

2

aBR

α2 , B = BR.

Note that the Robin coefficientA depends on the point of the hypersurface.
The VEV’s of the energy–momentum tensor in coordinatesxi with line element (2) are obtained fro

expressions (24) and (25) by the standard coordinate transformation formulae. As before, we will pre
corresponding components in the form of the sum of purely dS and boundary induced parts:

(30)〈0dS|T k
i [glm,ϕ]|0dS〉 = 〈0̃dS|T k

i [glm,ϕ]|0̃dS〉 + 〈
T k
i [glm,ϕ]〉(b).

By using relations (4) between the coordinates, for the purely dS part one finds

(31)〈0̃dS|T k
i [glm,ϕ]|0̃dS〉 = (α2 − r2)−(D+1)/2aD

2D−1πD/2Γ (D/2)
diag

(
−1,

1

D
, . . . ,

1

D

)
+ bD

αD+1 δ
k
i .

This formula generalizes the result forD = 3 given, for instance, in Ref. [17]. As for the boundary induced ene
momentum tensor the spatial part is anisotropic, the corresponding part in coordinatesxi is more complicated:

(32)
〈
T k
i [glm,ϕ]〉(b) = Ω−D−1〈T k

i

[
gR
lm,ϕR

]〉(b)
, i, k = 0,3, . . . ,D,

(33)
〈
T 1

1 [glm,ϕ]〉(b) = (cosθ − r/α)2

ΩD+3

〈
T 1

1

[
gR
lm,ϕR

]〉(b) + 1− r2/α2

ΩD+3 sin2 θ
〈
T 2

2

[
gR
lm,ϕR

]〉(b)
,

(34)
〈
T 2

1 [glm,ϕ]〉(b) = (r/α − cosθ)sinθ

rΩD+3

{〈
T 1

1

[
gR
lm,ϕR

]〉(b) − 〈
T 2

2

[
gR
lm,ϕR

]〉(b)}
,

(35)
〈
T 2

2 [glm,ϕ]〉(b) = 1− r2/α2

D+3
sin2 θ

〈
T 1

1

[
gR
lm,ϕR

]〉(b) + (r/α − cosθ)2

D+3

〈
T 2

2

[
gR
lm,ϕR

]〉(b)
,

Ω Ω
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where the expressions for the components of the boundary induced energy–momentum tensor in the
spacetime are given by formulae (15)–(17) in the regionξ > a and by similar formulae with the replacemen
Iω →Kω andKω → Iω in the regionξ > a. In these expressions,ξ has to be substituted from (4). As we see
resulting energy–momentum tensor is non-diagonal. It follows from (28) that the induced metric on the b
also non-diagonal.

Now we turn to the investigation for the limiting cases of the general formulae for the vacuum en
momentum tensor. First of all let us consider the near horizon limit,r → α, for a fixedθ �= 0. In this limit one
hasξ → 0 and we can use the results from Ref. [22] for this limit of the Rindler part. As a result we obtain

(36)
〈
T 0

0 [glm,ϕ]〉(b) = − (D − 1)B0 sin2(1−D)(θ/2)

4Dπ(D+1)/2DΓ ((D − 1)/2)aD−1(α2 − r2) ln2(
√
α2 − r2/a)

,

(37)
〈
T 1

1 [glm,ϕ]〉(b) = −〈
T 0

0 [glm,ϕ]〉(b),
(38)

〈
T 1

2 [glm,ϕ]〉(b) = 1

α
cot

θ

2

〈
T 1

1 [glm,ϕ]〉(b),

(39)
〈
T 3

3 [glm,ϕ]〉(b) = 2〈T 1
1 [glm,ϕ]〉(b)

(D − 1) ln(
√
α2 − r2/a)

,

where

(40)B0 =
∞∫

0

dy yD−2 K̄0(y)

Ī0(y)
.

As we see the boundary part is divergent at the dS horizon. Recall that near the horizon the purely dS par
as(α2 − r2)−(D+1)/2 and, therefore, in this limit the total vacuum energy–momentum tensor is dominated b
part.

The boundary induced parts (32)–(35) diverge on the boundary, corresponding to the limitξ → a. In this limit,
by taking into account that〈T 1

1 [gRlm,ϕR]〉(b) ∼ (ξ/a − 1)〈T 2
2 [gRlm,ϕR]〉(b), for r �= α we can omit the term

containing〈T 1
1 [gRlm,ϕR]〉(b) and obtain the following relations between the boundary induced components:

(41)〈T 3
3 〉(b) ∼ −〈T 0

0 〉(b)
D − 1

∼ α2〈T 1
1 〉(b)

a2 sin2 θ
∼ rΩ2〈T 1

2 〉(b)
sinθ(cosθ − r/α)

∼ Ω2〈T 2
2 〉(b)

(cosθ − r/α)2
,

where 〈T 0
0 〉(b) ∼ (ξ − a)1−D and we can substitute in the coefficients of these relations cosθ = (α/r)(1 −√

α2 − r2/a). Near the point(r, θ) = (α,0), where the boundary touches the horizon, the horizon and boun
divergences are mixed: in the coefficients of Eqs. (32)–(35) one hasΩ → 0 and from the Rindler parts facto
(ξ − a)1−D come.

In the discussion above we have considered the vacuum energy–momentum tensor of the bulk. For a sc
on manifolds with boundaries in addition to the bulk part the energy–momentum tensor contains a cont
located on the boundary. For arbitrary bulk and boundary geometries the expression of the surface
momentum tensor is given in Ref. [27]. Special cases of flat, spherical and cylindrical boundaries in the Min
background are considered in Refs. [28–30]. In the case of a conformally coupled scalar field the transfo
formula for the surface energy–momentum tensor under the conformal rescaling of the metric is the sam
for the volume part. For our problem in this Letter, the surface energy–momentum tensor is obtained f
corresponding Rindler counterpart by a way similar to that described above. The expression for the latter
in Ref. [27].
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4. Conclusion

In the present Letter we have investigated the Casimir densities in dS spacetime for a conformally
massless scalar field which satisfies the Robin boundary condition (3) on a hypersurface described by Eq
coefficients in the boundary condition are given by relations (29) with constantsAR andBR and, in general, depen
on the point of the hypersurface. The latter is the conformal image of the flat boundary moving by uniform
acceleration in the Minkowski spacetime. We have assumed that the field in dS spacetime is in the state con
related to the Fulling–Rindler vacuum. The energy–momentum tensor in dS spacetime is generated
corresponding results in the Rindler spacetime by using the standard formula for the energy–momentum t
conformally related problems in combination with the appropriate coordinate transformation. The Rindler e
momentum tensor is taken from Ref. [22], where the general case of the curvature coupling parameter is co
The VEV of the energy–momentum tensor for a brane in dS spacetime consists of two parts given in Eq. (
first one corresponds to the purely dS contribution when the boundary is absent. It is determined by
(31), where the second term on the right is due to the trace anomaly and is zero for odd spacetime dim
The second part in the vacuum energy–momentum tensor is due to the imposition of boundary condition
fluctuating quantum field. The corresponding components are related to the vacuum energy–momentum
the Rindler spacetime by Eqs. (32)–(35) and the Rindler tensor in the regionξ > a is given by formulae (15)–(17)
The results for the regionξ < a are obtained from these formulae by replacementsIω → Kω, Kω → Iω. Unlike
to the purely dS part, the boundary induced part of the energy–momentum tensor is non-diagonal and de
both dS static coordinatesr andθ . At the dS horizon both parts in the vacuum energy–momentum tensor div
with the leading divergence(α2 − r2)−(D+1)/2, coming from the purely dS part. Another type of divergence a
on the brane, where the boundary induced part dominates. Near the points where the brane touches th
the divergences are mixed and are stronger. Note that in this Letter we have considered vacuum densities
finite away from the brane and dS horizon. As it has been mentioned in Ref. [15], the same results will be o
in the model where instead of externally imposed boundary condition the fluctuating field is coupled to a
background potential that implements the boundary condition in a certain limit.
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