2,796 research outputs found

    A eubacterial origin for the human tRNA nucleotidyltransferase?

    Get PDF
    tRNA CCA-termini are generated and maintained by tRNA nucleotidyltransferases. Together with poly(A) polymerases and other enzymes they belong to the nucleotidyltransferase superfamily. However, sequence alignments within this family do not allow to distinguish between CCA-adding enzymes and poly(A) polymerases. Furthermore, due to the lack of sequence information about animal CCA-adding enzymes, identification of corresponding animal genes was not possible so far. Therefore, we looked for the human homolog using the baker's yeast tRNA nucleotidyltransferase as a query sequence in a BLAST search. This revealed that the human gene transcript CGI-47, (\#AF151805) deposited in GenBank is likely to encode such an enzyme. To identify the nature of this protein, the cDNA of the transcript was cloned and the recombinant protein biochemically characterized, indicating that CGI-47 encodes a bona fide CCA-adding enzyme and not a poly(A) polymerase. This confirmed animal CCA-adding enzyme allowed us to identify putative homologs from other animals. Calculation of a neighbor-joining tree, using an alignment of several CCA-adding enzymes, revealed that the animal enzymes resemble more eubacterial ones than eukaryotic plant and fungal tRNA nucleotidyltransferases, suggesting that the animal nuclear cca genes might have been derived from the endosymbiotic progenitor of mitochondria and are therefore of eubacterial origin

    Multi-objective optimisation on motorized momentum exchange tether for payload orbital transfer

    Get PDF
    The symmetrical motorised momentum exchange tether, is intended to be excited by a continuous torque, so that, it can be applied as an orbital transfer system. The motor drive accelerates the tether, and increases the relative velocity of payloads fitted to each end. In order to access better tether performance, a higher efficiency index needs to be achieved. Meanwhile, the stress in each tether sub-span should stay within the stress limitations. The multi-objective optimisation methods of Genetic Algorithms can be applied for tether performance enhancement. The tether's efficiency index and stress are used as multi-objectives, and the analysis of the resulting Pareto front suggests a set of solutions for the parameters of the motorised momentum exchange tether when used for payload transfer, in order to achieve relative high transfer performance, and safe tether strength

    Transfer-Matrix Monte Carlo Estimates of Critical Points in the Simple Cubic Ising, Planar and Heisenberg Models

    Full text link
    The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demonstrate how the statistical noise can be reduced considerably by a similarity transformation of the transfer matrix using a variational estimate of its leading eigenvector, in analogy with a common practice in various quantum Monte Carlo techniques. Here we take the two-dimensional coupled XYXY-Ising model as an example. Furthermore, we calculate interface free energies of finite three-dimensional O(nn) models, for the three cases n=1n=1, 2 and 3. Application of finite-size scaling to the numerical results yields estimates of the critical points of these three models. The statistical precision of the estimates is satisfactory for the modest amount of computer time spent

    Surface tension of the isotropic-nematic interface

    Full text link
    We present the first calculations of the pressure tensor profile in the vicinity of the planar interface between isotropic liquid and nematic liquid crystal, using Onsager's density functional theory and computer simulation. When the liquid crystal director is aligned parallel to the interface, the situation of lowest free energy, there is a large tension on the nematic side of the interface and a small compressive region on the isotropic side. By contrast, for perpendicular alignment, the tension is on the isotropic side. There is excellent agreement between theory and simulation both in the forms of the pressure tensor profiles, and the values of the surface tension.Comment: Minor changes; to appear in Phys. Rev.

    Simple Dynamics on the Brane

    Full text link
    We apply methods of dynamical systems to study the behaviour of the Randall-Sundrum models. We determine evolutionary paths for all possible initial conditions in a 2-dimensional phase space and we investigate the set of accelerated models. The simplicity of our formulation in comparison to some earlier studies is expressed in the following: our dynamical system is a 2-dimensional Hamiltonian system, and what is more advantageous, it is free from the degeneracy of critical points so that the system is structurally stable. The phase plane analysis of Randall-Sundrum models with isotropic Friedmann geometry clearly shows that qualitatively we deal with the same types of evolution as in general relativity, although quantitatively there are important differences.Comment: an improved version, 34 pages, 9 eps figure

    Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying

    Get PDF
    The effect of metal alloying on mechanical properties including hardness and fracture toughness were investigated in three alloys, Ti~0.33Al0.50(Me)~0.17N (Me¿=¿Cr, Nb and V), and compared to Ti0.50Al0.50N, in the as-deposited state and after annealing. All studied alloys display similar as-deposited hardness while the hardness evolution during annealing is found to be connected to phase transformations, related to the alloy's thermal stability. The most pronounced hardening was observed in Ti0.50Al0.50N, while all the coatings with additional metal elements sustain their hardness better and they are harder than Ti0.50Al0.50N after annealing at 1100¿°C. Fracture toughness properties were extracted from scratch tests. In all tested conditions, as-deposited and annealed at 900 and 1100¿°C, Ti0.33Al0.50Nb0.17N show the least surface and sub-surface damage when scratched despite the differences in decomposition behavior and h-AlN formation. Theoretically estimated ductility of phases existing in the coatings correlates well with their crack resistance. In summary, Ti0.33Al0.50Nb0.17N is the toughest alloy in both as-deposited and post-annealed states.Peer ReviewedPostprint (author's final draft

    Stripes in Quantum Hall Double Layer Systems

    Full text link
    We present results of a study of double layer quantum Hall systems in which each layer has a high-index Landau level that is half-filled. Hartree-Fock calculations indicate that, above a critical layer separation, the system becomes unstable to the formation of a unidirectional coherent charge density wave (UCCDW), which is related to stripe states in single layer systems. The UCCDW state supports a quantized Hall effect when there is tunneling between layers, and is {\it always} stable against formation of an isotropic Wigner crystal for Landau indices N1N \ge 1. The state does become unstable to the formation of modulations within the stripes at large enough layer separation. The UCCDW state supports low-energy modes associated with interlayer coherence. The coherence allows the formation of charged soliton excitations, which become gapless in the limit of vanishing tunneling. We argue that this may result in a novel {\it ``critical Hall state''}, characterized by a power law IVI-V in tunneling experiments.Comment: 10 pages, 8 figures include
    corecore