6 research outputs found

    The ProtekDuo dual-lumen cannula for temporary acute mechanical circulatory support in right heart failure: A systematic review

    No full text
    Introduction Acute right ventricular failure (aRVF) is associated with high mortality and morbidity. Mechanical circulatory support (MCS) may be considered as an advanced treatment option. The ProtekDuo is a cannula that can be used to provide acute right ventricular support as part of a temporary percutaneous (tp) right ventricular assist device (RVAD) system. The primary objective of this systematic review is to describe patient survival and complications when the ProtekDuo cannula was used as part of an tpRVAD system. Methods MEDLINE, Embase, and Scopus were searched from database inception to August 26, 2022. Reference sections of studies were reviewed to screen for database omissions. Results Seven studies with 127 patients were eligible for inclusion. The studies included patients with aRVF from a variety of causes. Mean duration of support was between 10 and 58 days in five studies. Patient survival to discharge was between 60% and 85.2% in two studies. Four authors reported 30-day survival between 60% and 85.2%. Devicerelated and non-device related complications were low. Conclusions Patients treated with RVAD using the ProtekDuo cannula have comparable survival rates and complications to other tpRVAD systems. Several advantages exist compared to other RVAD systems

    Cerebral oximetry and return of spontaneous circulation after cardiac arrest: A systematic review and meta-analysis.

    No full text
    AIM: The prediction of return of spontaneous circulation (ROSC) during resuscitation of patients suffering of cardiac arrest (CA) is particularly challenging. Regional cerebral oxygen saturation (rSO2) monitoring through near-infrared spectrometry is feasible during CA and could provide guidance during resuscitation. METHODS: We conducted a systematic review and meta-analysis on the value of rSO2 in predicting ROSC both after in-hospital (IH) or out-of-hospital (OH) CA. Our search included MEDLINE (PubMed) and EMBASE, from inception until April 4th, 2015. We included studies reporting values of rSO2 at the beginning of and/or during resuscitation, according to the achievement of ROSC. RESULTS: A total of nine studies with 315 patients (119 achieving ROSC, 37.7%) were included in the meta-analysis. The majority of those patients had an OHCA (n=225, 71.5%; IHCA: n=90, 28.5%). There was a significant association between higher values of rSO2 and ROSC, both in the overall calculation (standardized mean difference, SMD -1.03; 95%CI -1.39,-0.67; p<0.001), and in the subgroups analyses (rSO2 at the beginning of resuscitation: SMD -0.79; 95%CI -1.29,-0.30; p=0.002; averaged rSO2 value during resuscitation: SMD -1.28; 95%CI -1.74,-0.83; p<0.001). CONCLUSIONS: Higher initial and average regional cerebral oxygen saturation values are both associated with greater chances of achieving ROSC in patients suffering of CA. A note of caution should be made in interpreting these results due to the small number of patients and the heterogeneity in study design: larger studies are needed to clinically validate cut-offs for guiding cardiopulmonary resuscitation

    Intracardiac echocardiography guided transeptal catheter injection of microspheres for assessment of cerebral microcirculation in experimental models

    Get PDF
    The use of microspheres for the determination of regional microvascular blood flow (RMBF) has previously used different approaches. This study presents for the first time the intracardiac injection of microspheres using transeptal puncture under intracardiac echocardiography guidance. Five Merino sheep were instrumented and cardiovascularly supported according to local guidelines. Two catheter sheaths into the internal jugular vein facilitated the introduction of an intracardiac probe and transeptal catheter, respectively. Five million colour coded microspheres were injected into the left atrium via this catheter. After euthanasia the brain was used as proof of principle and the endpoint for determination of microcirculation at different time points. Homogeneous allocation of microspheres to different regions of the brain was found over time. Alternate slices from both hemispheres showed the following flow ranges: for slice 02; 0.57-1.02 mL/min/g, slice 04; 0.45-1.42 mL/min/g, slice 06; 0.35-1.87 mL/min/g, slice 08; 0.46-1.77 mL/min/g, slice 10; 0.34-1.28 mL/min/g. A mixed effect regression model demonstrated that the confidence interval did include zero suggesting that the apparent variability intra- and intersubject was not statistically significant, supporting the stability and reproducibility of the injection technique. This study demonstrates the feasibility of the transeptal injection of microspheres, showing a homogeneous distribution of blood flow through the brain unchanged over time and has established a new interventional model for the measurement of RMBF in ovine models

    Shock – Classification and Pathophysiological Principles of Therapeutics

    No full text
    corecore