691 research outputs found

    The one-component plasma: a conceptual approach

    Full text link
    The one-component plasma (OCP) represents the simplest statistical mechanical model of a Coulomb system. For this reason, it has been extensively studied over the last forty years. The advent of the integral equations has resulted in a dramatic improvement in our ability to carry out numerical calculations, but came at the expense of a physical insight gained in a simpler analytic theory. In this paper we present an extension of the Debye-Hueckel (DH) theory to the OCP. The theory allows for analytic calculations of all the thermodynamic functions, as well as the structure factor. The theory explicitly satisfies the Stillinger-Lovett and, for small couplings, the compressibility sum rules, implying its internal self consistency.Comment: 28 pages, 5 Postscript figures, uses elsart.sty, accepted for publication in Physica

    Test of renormalization predictions for universal finite-size scaling functions

    Full text link
    We calculate universal finite-size scaling functions for systems with an n-component order parameter and algebraically decaying interactions. Just as previously has been found for short-range interactions, this leads to a singular epsilon-expansion, where epsilon is the distance to the upper critical dimension. Subsequently, we check the results by numerical simulations of spin models in the same universality class. Our systems offer the essential advantage that epsilon can be varied continuously, allowing an accurate examination of the region where epsilon is small. The numerical calculations turn out to be in striking disagreement with the predicted singularity.Comment: 6 pages, including 3 EPS figures. To appear in Phys. Rev. E. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm

    Spherical Model in a Random Field

    Full text link
    We investigate the properties of the Gibbs states and thermodynamic observables of the spherical model in a random field. We show that on the low-temperature critical line the magnetization of the model is not a self-averaging observable, but it self-averages conditionally. We also show that an arbitrarily weak homogeneous boundary field dominates over fluctuations of the random field once the model transits into a ferromagnetic phase. As a result, a homogeneous boundary field restores the conventional self-averaging of thermodynamic observables, like the magnetization and the susceptibility. We also investigate the effective field created at the sites of the lattice by the random field, and show that at the critical temperature of the spherical model the effective field undergoes a transition into a phase with long-range correlations r4d\sim r^{4-d}.Comment: 29 page

    Programming Groups of Rational Agents

    Full text link
    Abstract. In this paper, we consider the problem of effectively pro-gramming groups of agents. These groups should capture structuring mechanisms common in multi-agent systems, such as teams, cooperative groups, and organisations. Not only should individual agents be dynamic and evolving, but the groups in which the agents occur must be open, flexible and capable of similar evolution and restructuring. We enable the description and implementation of such groups by providing an extension to our previous work on programming languages for agent-based systems based on executable temporal and modal logics. With such formalism as a basis, we consider the grouping aspects within multi-agent systems. In particular, we describe how this logic-based approach to grouping has been implemented in Java and consider how this language can be used for developing multi-agent systems.

    Scaling Behavior of Anomalous Hall Effect and Longitudinal Nonlinear Response in High-Tc Superconductors

    Full text link
    Based on existing theoretical model and by considering our longitudinal nonlinear response function, we derive a nonliear equation in which the mixed state Hall resistivity can be expressed as an analytical function of magnetic field, temperature and applied current. This equation enables one to compare quantitatively the experimental data with theoretical model. We also find some new scaling relations of the temperature and field dependency of Hall resistivity. The comparison between our theoretical curves and experimental data shows a fair agreement.Comment: 4 pages, 3 figure

    Universal Magnetic Properties of La2δSrδCuO4La_{2-\delta} Sr_{\delta} Cu O_4 at Intermediate Temperatures

    Full text link
    We present the theory of two-dimensional, clean quantum antiferromagnets with a small, positive, zero temperature (TT) stiffness ρs\rho_s, but with the ratio kBT/ρsk_B T / \rho_s arbitrary. Universal scaling forms for the uniform susceptibility (χu\chi_u), correlation length(ξ\xi), and NMR relaxation rate (1/T11/T_1) are proposed and computed in a 1/N1/N expansion and by Mont\'{e}-Carlo simulations. For large kBT/ρsk_B T/\rho_s, χu(T)/T\chi_u (T)/T and Tξ(T)T\xi(T) asymptote to universal values, while 1/T1(T)1/T_{1}(T) is nearly TT-independent. We find good quantitative agreement with experiments and some numerical studies on La2δSrδCuO4La_{2-\delta} Sr_{\delta} Cu O_4.Comment: 14 pages, REVTEX, 1 postscript figure appende

    Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots

    Full text link
    We investigate the effects of finite temperature, dc pulse, and ac drives on the charge transport in metallic arrays using numerical simulations. For finite temperatures there is a finite conduction threshold which decreases linearly with temperature. Additionally we find a quadratic scaling of the current-voltage curves which is independent of temperature for finite thresholds. These results are in excellent agreement with recent experiments on 2D metallic dot arrays. We have also investigated the effects of an ac drive as well as a suddenly applied dc drive. With an ac drive the conduction threshold decreases for fixed frequency and increasing amplitude and saturates for fixed amplitude and increasing frequency. For sudden applied dc drives below threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure

    A Simple Model for the DNA Denaturation Transition

    Full text link
    We study pairs of interacting self-avoiding walks on the 3d simple cubic lattice. They have a common origin and are allowed to overlap only at the same monomer position along the chain. The latter overlaps are indeed favored by an energetic gain. This is inspired by a model introduced long ago by Poland and Sheraga [J. Chem. Phys. {\bf 45}, 1464 (1966)] for the denaturation transition in DNA where, however, self avoidance was not fully taken into account. For both models, there exists a temperature T_m above which the entropic advantage to open up overcomes the energy gained by forming tightly bound two-stranded structures. Numerical simulations of our model indicate that the transition is of first order (the energy density is discontinuous), but the analog of the surface tension vanishes and the scaling laws near the transition point are exactly those of a second order transition with crossover exponent \phi=1. Numerical and exact analytic results show that the transition is second order in modified models where the self-avoidance is partially or completely neglected.Comment: 29 pages, LaTeX, 20 postscript figure

    Reversible Pressure-Induced Amorphization in Solid C70 : Raman and Photoluminescence Study

    Full text link
    We have studied single crystals of C70C_{70} by Raman scattering and photoluminescence in the pressure range from 0 to 31.1 GPa. The Raman spectrum at 31.1 GPa shows only a broad band similar to that of the amorphous carbon without any trace of the Raman lines of C70C_{70}. After releasing the pressure from 31.1 GPa, the Raman and the photoluminescence spectra of the recovered sample are that of the starting C70C_{70} crystal. These results indicate that the C70C_{70} molecules are stable upto 31.1 GPa and the amorphous carbon high pressure phase is reversible, in sharp contrast to the results on solid C60C_{60}. A qualitative explaination is suggested in terms of inter- versus intra-molecular interactions.Comment: To appear in Phys. Rev. Lett., 12 pages, RevTeX (preprint format), 3 figures available upon reques
    corecore