46 research outputs found

    A new geopolymeric binder from hydrated-carbonated cement

    Full text link
    This paper evaluates the use of hydrated Portland cement as the raw material in the production of geopolymers. The silicon and aluminium oxides needed for the geopolymerization process were produced by the carbonation of hydrated Portland cement, which transforms CSH and CAH (Portland cement hydrates) into silica and alumina gels. Hydrated-carbonated Portland cement was alkali activated with a NaOH/waterglass solution. Pastes and mortars were prepared, and micro-structural and mechanical properties were analyzed. It has been noted that geopolymers are mechanically stable and yield compressive strength higher than 10 MPa when mortars are cured at 65 °C for 3 days. The results have shown that there are interesting possibilities for re-using the cement-rich fraction of construction and demolition waste. Alkaline activation of hydrated-carbonated Portland cement could be considered a low CO 2-emission binder. © 2012 Elsevier B.V. All rights reserved.Paya Bernabeu, JJ.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Soriano Martinez, L.; Mitsuuchi Tashima, M. (2012). A new geopolymeric binder from hydrated-carbonated cement. Materials Letters. 74:223-225. doi:10.1016/j.matlet.2012.01.132S2232257

    Optical application and measurement of torque on microparticles of isotropic nonabsorbing material

    Get PDF
    We show how it is possible to controllably rotate or align microscopic particles of isotropic nonabsorbing material in a TEM00 Gaussian beam trap, with simultaneous measurement of the applied torque using purely optical means. This is a simple and general method of rotation, requiring only that the particle is elongated along one direction. Thus, this method can be used to rotate or align a wide range of naturally occurring particles. The ability to measure the applied torque enables the use of this method as a quantitative tool--the rotational equivalent of optical tweezers based force measurement. As well as being of particular value for the rotation of biological specimens, this method is also suitable for the development of optically-driven micromachines.Comment: 8 pages, 6 figure

    New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC)

    Full text link
    This paper provides information about the synthesis and mechanical properties of geopolymers based on fluid catalytic cracking catalyst residue (FCC). FCC was alkali activated with solutions containing different SiO 2/Na 2O ratios. The microstructure and mechanical properties were analysed by using several instrumental techniques. FCC geopolymers are mechanically stable, yielding compressive strength about 68 MPa when mortars are cured at 65°C during 3 days. The results confirm the viability of producing geopolymers based on FCC. © 2012 Elsevier B.V. All rights reserved.We acknowledge the Ministerio de Ciencia e Innovacion (MICINN) of the Spanish Government and FEDER funds (MAT-2011-19934 project) and the PROPG-UNESP "Universidade Estadual Paulista Julio de Mesquita Filho", Brazil.Mitsuuchi Tashima, M.; Akasaki, JL.; Castaldelli, V.; Soriano Martínez, L.; Monzó Balbuena, JM.; Paya Bernabeu, JJ.; Borrachero Rosado, MV. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters. 80:50-52. https://doi.org/10.1016/j.matlet.2012.04.051S50528

    Microquasars: summary and outlook

    Full text link
    Microquasars are compact objects (stellar-mass black holes and neutron stars) that mimic, on a smaller scale, many of the phenomena seen in quasars. Their discovery provided new insights into the physics of relativistic jets observed elsewhere in the universe, and in particular, the accretion-jet coupling in black holes. Microquasars are opening new horizons for the understanding of ultraluminous X-ray sources observed in external galaxies, gamma-ray bursts of long duration, and the origin of stellar black holes and neutron stars. Microquasars are one of the best laboratories to probe General Relativity in the limit of the strongest gravitational fields, and as such, have become an area of topical interest for both high energy physics and astrophysics. At present, back hole astrophysics exhibits historical and epistemological similarities with the origins of stellar astrophysics in the last century.Comment: 14 pages, 7 figures, To appear in Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Erratum for the Report “A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni”

    Get PDF
    In the Report “A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni,” a calculation error led to values of the magnetic field that were about 14 times too high. The mathematical expressions given in the Report were correct, but the code used to calculate the numerical values included an extraneous factor, which led to incorrect results. The magnetic fields calculated from the observations at different wavelengths were all scaled by the same factor, so after this is removed they remain consistent with each other. The corrected value of the magnetic field is lower than previously calculated, making the field in V404 Cygni even more unlike those estimated for other systems. However, the lower magnetic field is no longer consistent with the value predicted from the equipartition model. The text, materials and methods, Table S1, and Figure S3 have been updated to reflect the corrected magnetic field values and to state that the system was not in equipartition. No other results or conclusions of the study were affected. The authors thank J. Malzac (Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse) for alerting them to this error

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
    corecore