108 research outputs found

    Dielectric loss of boron-based dielectrics on niobium resonators

    Get PDF
    Advanced solid-state quantum bits (qubits) are likely to require a variety of dielectrics for wiring crossovers, substrates, and Josephson junctions. Microwave superconducting resonators are an excellent tool for measuring the internal dielectric loss of materials. We report the dielectric loss of boron-based dielectric films using a microwave coplanar waveguide (CPW) resonator with heterostructure geometry. Power-dependent internal quality factors of magnetron-sputtered boron carbide ( B4C ) and boron nitride (BN) were measured and are compared to silicon oxide ( SiO2 ), a common material used in wiring crossovers. The internal dielectric loss due to two-level systems for B4C , and BN is less than silicon dioxide ( SiO2 ), which demonstrates the existence of low-loss sputtered materials. We also found that niobium (Nb) CPW resonators suffer a decrease in internal quality factor after deposition of B4C at temperatures above 150 ∘C . This result is consistent with the idea that the oxidation of the surface of the superconducting metal can contribute to loss in a device

    GenSeed-HMM: A tool for progressive assembly using profile HMMs as seeds and its application in Alpavirinae viral discovery from metagenomic data

    Get PDF
    This work reports the development of GenSeed-HMM, a program that implements seed-driven progressive assembly, an approach to reconstruct specific sequences from unassembled data, starting from short nucleotide or protein seed sequences or profile Hidden Markov Models (HMM). The program can use any one of a number of sequence assemblers. Assembly is performed in multiple steps and relatively few reads are used in each cycle, consequently the program demands low computational resources. As a proof-of-concept and to demonstrate the power of HMM-driven progressive assemblies, GenSeed-HMM was applied to metagenomic datasets in the search for diverse ssDNA bacteriophages from the recently described Alpavirinae subfamily. Profile HMMs were built using Alpavirinae-specific regions from multiple sequence alignments using either the viral protein 1 (VP1) (major capsid protein) or VP4 (genome replication initiation protein). These profile HMMs were used by GenSeed-HMM (running Newbler assembler) as seeds to reconstruct viral genomes from sequencing datasets of human fecal samples. All contigs obtained were annotated and taxonomically classified using similarity searches and phylogenetic analyses. The most specific profile HMM seed enabled the reconstruction of 45 partial or complete Alpavirinae genomic sequences. A comparison with conventional (global) assembly of the same original dataset, using Newbler in a standalone execution, revealed that GenSeed-HMM outperformed global genomic assembly in several metrics employed. This approach is capable of detecting organisms that have not been used in the construction of the profile HMM, which opens up the possibility of diagnosing novel viruses, without previous specific information, constituting a de novo diagnosis. Additional applications include, but are not limited to, the specific assembly of extrachromosomal elements such as plastid and mitochondrial genomes from metagenomic data. Profile HMM seeds can also be used to reconstruct specific protein coding genes for gene diversity studies, and to determine all possible gene variants present in a metagenomic sample. Such surveys could be useful to detect the emergence of drug-resistance variants in sensitive environments such as hospitals and animal production facilities, where antibiotics are regularly used. Finally, GenSeed-HMM can be used as an adjunct for gap closure on assembly finishing projects, by using multiple contig ends as anchored seeds

    Setting clinical performance specifications to develop and evaluate biomarkers for clinical use

    Get PDF
    Background: Biomarker discovery studies often claim ‘promising’ findings, motivating further studies and marketing as medical tests. Unfortunately, the patient benefits promised are often inadequately explained to guide further evaluation, and few biomarkers have translated to improved patient care. We present a practical guide for setting minimum clinical performance specifications to strengthen clinical performance study design and interpretation. Methods: We developed a step-by-step approach using test evaluation and decision-analytic frameworks and present with illustrative examples. Results: We define clinical performance specifications as a set of criteria that quantify the clinical performance a new test must attain to allow better health outcomes than current practice. We classify the proposed patient benefits of a new test into three broad groups and describe how to set minimum clinical performance at the level where the potential harm of false-positive and false-negative results does not outweigh the benefits. (1) For add-on tests proposed to improve disease outcomes by improving detection, define an acceptable trade-off for false-positive versus true-positive results; (2) for triage tests proposed to reduce unnecessary tests and treatment by ruling out disease, define an acceptable risk of false-negatives as a safety threshold; (3) for replacement tests proposed to provide other benefits, or reduce costs, without compromising accuracy, use existing tests to benchmark minimum accuracy levels. Conclusions: Researchers can follow these guidelines to focus their study objectives and to define statistical hypotheses and sample size requirements. This way, clinical performance studies will allow conclusions about whether test performance is sufficient for intended use

    Great saves or near misses? Severe maternal outcome in Metro East, South Africa: a region-wide population-based case-control study

    Get PDF
    Objective To assess the incidence of severe maternal outcome (SMO), comprising maternal mortality (MM) and maternal near miss (MNM), in Metro East health district, Western Cape Province, South Africa between November 2014 and November 2015 and to identify associated determinants leading to SMO with the aim to improve maternity care.Methods Region-wide population-based case-control study. Women were included in the study, if they were maternal deaths or met MNM criteria, both as defined by WHO. Characteristics of women with SMO were compared with those of a sample of women without SMO, matched for age and parity, taken from midwifery-led obstetrical units from two residential areas in Metro East, using multivariate regression analysis.Results Incidence of SMO was 9.1 per 1000 live births, and incidence of MNM was 8.6 per 1000 live births. Main causes of SMO were obstetrical hemorrhage and hypertensive disorders. Factors associated with SMO were HIV (adjusted odds ratio [aOR] 24.8; 95% confidence interval [CI] 10.0-61.6), pre-eclampsia (aOR 17.5; 95% CI 7.9-38.7), birth by cesarean section (aOR 8.4; 95% CI 5.8-12.3), and chronic hypertension (aOR 2.4; 95% CI 1.1-5.1).Conclusion Evaluation of SMO incidence and associated determinants supports optimizing tailored guidelines in Metro-East health district to improve maternal health.Research into fetal development and medicin

    Teams between Neo-Taylorism and Anti-Taylorism

    Get PDF
    The concept of teamworking is the product of two distinct developments. One: a neo- Tayloristic form of organization of work, of which Toyota has shown that it can be very profitable, was packaged and reframed to make it acceptable to the Western public. Two: anti-Tayloristic ways of organizing work, inspired by ideals of organizational democracy, were relabeled to make these acceptable to profit-oriented managers. Drawing on empirical research in Scandinavia, Germany, The Netherlands and the UK, as well as on published case studies of Japanese companies, the paper develops a neo-Tayloristic and an anti-Tayloristic model of teamworking. Key concerns in the teamworking literature are intensification of work and the use of shop floor autonomy as a cosmetic or manipulative device. Indeed, all the features of neo-Tayloristic teamworking are geared towards the intensification of work. However, one of the intensification mechanisms, the removal of Tayloristic rigidities in the division of labor, applies to anti-Tayloristic teamworking as well. This poses a dilemma for employee representatives. In terms of autonomy, on the other hand, the difference between neo-Tayloristic and anti-Tayloristic teamworking is real. In anti-Tayloristic teamworking, there is no supervisor inside the team. The function of spokesperson rotates. All team members can participate in decision-making. Standardization is not relentlessly pursued; management accepts some measure of worker control. There is a tendency to alleviate technical discipline, e.g. to find alternatives for the assembly line. Buffers are used. Remuneration is based on proven skill level; there are no group bonuses. In contrast, in neo-Tayloristic teamworking, a permanent supervisor is present in the team as team leader. At most, only the team leader can participate in decision-making. Standardization is relentlessly pursued. Management prerogatives are nearly unlimited. Job designers treat technical discipline, e.g. short-cycled work on the assembly line, as unproblematic. There are no buffers. A substantial part of wages consists of individual bonuses based on assessments by supervisors on how deeply workers cooperate in the system. Group bonuses are also given. The instability and vulnerability of anti-Tayloristic teamworking imply that it can only develop and flourish when managers and employee representatives put determined effort into it. The opportunity structure for this contains both economic and political elements. In mass production, the economic success of Toyota, through skillful mediation by management gurus, makes the opportunity structure for anti-Tayloristic teamworking relatively unfavorable

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    • …
    corecore