580 research outputs found

    Existence and Stability of Symmetric Periodic Simultaneous Binary Collision Orbits in the Planar Pairwise Symmetric Four-Body Problem

    Full text link
    We extend our previous analytic existence of a symmetric periodic simultaneous binary collision orbit in a regularized fully symmetric equal mass four-body problem to the analytic existence of a symmetric periodic simultaneous binary collision orbit in a regularized planar pairwise symmetric equal mass four-body problem. We then use a continuation method to numerically find symmetric periodic simultaneous binary collision orbits in a regularized planar pairwise symmetric 1, m, 1, m four-body problem for mm between 0 and 1. Numerical estimates of the the characteristic multipliers show that these periodic orbits are linearly stability when 0.54m10.54\leq m\leq 1, and are linearly unstable when 0<m0.530<m\leq0.53.Comment: 6 figure

    Classification of Message Spreading in a Heterogeneous Social Network

    Get PDF
    Nowadays, social networks such as Twitter, Facebook and LinkedIn become increasingly popular. In fact, they introduced new habits, new ways of communication and they collect every day several information that have different sources. Most existing research works fo-cus on the analysis of homogeneous social networks, i.e. we have a single type of node and link in the network. However, in the real world, social networks offer several types of nodes and links. Hence, with a view to preserve as much information as possible, it is important to consider so-cial networks as heterogeneous and uncertain. The goal of our paper is to classify the social message based on its spreading in the network and the theory of belief functions. The proposed classifier interprets the spread of messages on the network, crossed paths and types of links. We tested our classifier on a real word network that we collected from Twitter, and our experiments show the performance of our belief classifier

    The deformation of the interacting nucleon in the Skyrme model

    Get PDF
    Changes in the nucleon shape are investigated by letting the nucleon deform under the strong interactions with another nucleon. The parameters of the axial deformations are obtained by minimizing the static energy of the two nucleon system at each internucleon distance R R . It is shown that the intrinsic quadrupole moment of the interacting proton, QpQ_{p}, is about 0.02fm20.02 fm^2 at distances near R1.25R \sim 1.25 fm.Comment: 11 pages, uudecode, gzip, tar, latex, 3 eps figures, accepted for the publication by Phys.Lett.

    Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton

    Full text link
    If the inflaton is a pseudoscalar, then it naturally interacts with gauge fields via an axion-like coupling to FμνF~μνF_{\mu\nu} \tilde{F}^{\mu\nu}. Through this coupling, the rolling inflaton produces quanta of the gauge field, that in their turn source the tensor components of the metric perturbations. Due to the parity-violating nature of the system, the right- and the left-handed tensor modes have different amplitudes. Such an asymmetry manifests itself in the form of non-vanishing TB and EB correlation functions in the Cosmic Microwave Background (CMB). We compute the amplitude of the parity-violating tensor modes and we discuss two scenarios, consistent with the current data, where parity-violating CMB correlation functions will be detectable in future experiments.Comment: 9 pages, 1 figure; v2: a minor numerical mistake corrected, references added; v3: minor changes, matches published versio

    Dynamical and stationary critical behavior of the Ising ferromagnet in a thermal gradient

    Full text link
    In this paper we present and discuss results of Monte Carlo numerical simulations of the two-dimensional Ising ferromagnet in contact with a heat bath that intrinsically has a thermal gradient. The extremes of the magnet are at temperatures T1<Tc<T2T_1<T_c<T_2, where TcT_c is the Onsager critical temperature. In this way one can observe a phase transition between an ordered phase (TTcTT_c) by means of a single simulation. By starting the simulations with fully disordered initial configurations with magnetization m0m\equiv 0 corresponding to T=T=\infty, which are then suddenly annealed to a preset thermal gradient, we study the short-time critical dynamic behavior of the system. Also, by setting a small initial magnetization m=m0m=m_0, we study the critical initial increase of the order parameter. Furthermore, by starting the simulations from fully ordered configurations, which correspond to the ground state at T=0 and are subsequently quenched to a preset gradient, we study the critical relaxation dynamics of the system. Additionally, we perform stationary measurements (tt\rightarrow\infty) that are discussed in terms of the standard finite-size scaling theory. We conclude that our numerical simulation results of the Ising magnet in a thermal gradient, which are rationalized in terms of both dynamic and standard scaling arguments, are fully consistent with well established results obtained under equilibrium conditions

    Linear Stability for Some Symmetric Periodic Simultaneous Binary Collision Orbits in the Four-Body Problem

    Full text link
    We apply the analytic-numerical method of Roberts to determine the linear stability of time-reversible periodic simultaneous binary collision orbits in the symmetric collinear four body problem with masses 1, m, m, 1, and also in a symmetric planar four-body problem with equal masses. For the collinear problem, this verifies the earlier numerical results of Sweatman for linear stability.Comment: 16 pages, 4 figure

    Mean-field description of collapsing and exploding Bose-Einstein condensates

    Full text link
    We perform numerical simulation based on the time-dependent mean-field Gross-Pitaevskii equation to understand some aspects of a recent experiment by Donley et al. on the dynamics of collapsing and exploding Bose-Einstein condensates of 85^{85}Rb atoms. They manipulated the atomic interaction by an external magnetic field via a Feshbach resonance, thus changing the repulsive condensate into an attractive one and vice versa. In the actual experiment they changed suddenly the scattering length of atomic interaction from positive to a large negative value on a pre-formed condensate in an axially symmetric trap. Consequently, the condensate collapses and ejects atoms via explosion. We find that the present mean-field analysis can explain some aspects of the dynamics of the collapsing and exploding Bose-Einstein condensates.Comment: 9 Latex pages, 10 ps and eps files, version accepted in Physical Review A, minor changes mad

    Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice

    Get PDF
    To study microglial/macrophage infiltration, a cuprizone-induced model for demyelination in C57BL/6 mice was established. Cuprizone is known to cause demyelination in Swiss mice, however, cuprizone-induced demyelination in C57BL/6 mice has not been previously described. Induction of demyelination in C57BL/6 mice enables examination of the function of microglia/macrophage through comparative analyses of syngeneic mice with various targeted genetic mutations. In this report, cuprizone-induced demyelination is easily inducible, localized, and predictable. Concurrent with the initiation of demyelination, we noted microglial/macrophage accumulation and changes in astrocyte morphology. Astrogliosis promptly followed microglia/macrophage recruitment. These observations suggested that microglia/macrophage actively contribute to the demyelination process

    Efficient zinc/cobalt inter-replacement in northeast Pacific diatoms and relationship to high surface dissolved Co : Zn ratios

    Get PDF
    The importance of zinc (Zn) as a nutrient and its ability to be substituted for by cobalt (Co) have been characterized in model marine diatoms. However, the extent to which this substitution capability is distributed among diatom taxa is unknown. Zn/Co metabolic substitution was assayed in four diatom species as measured by the effect of free ion concentrations of Zn2+ and Co2+ on specific growth rate. Analysis of growth responses found substitution of these metals can occur within the northwest Atlantic isolate Thalassiosira pseudonana CCMP1335, the northeast Atlantic isolate Phaeodactylum tricornutum CCMP632, and within the northeast Pacific isolates Pseudo-nitzschia delicatissima UNC1205 and Thalassiosira sp. UNC1203. Metabolic substitution of Co in place of Zn in the Atlantic diatoms supports their growth in media lacking added Zn, but at the cost of reduced growth rates. In contrast, highly efficient Zn/Co substitution that supported growth even in media lacking added Zn was observed in the northeast Pacific diatoms. We also present new data from the northeast Pacific Line P transect that revealed dissolved Co and Zn ratios (dCo : dZn) as high as 3.52 : 1 at surface (0–100 m) depths. We posit that the enhanced ability of the NE Pacific diatoms to grow using Co is an adaptation to these high surface dCo : dZn ratios. Particulate metal data and single-cell metal quotas also suggest a high Zn demand in diatoms that may be partially compensated for by Co

    Single step process for the synthesis of carbon nanotubes and metal/alloy-filled multiwalled carbon nanotubes

    Get PDF
    A single-step approach for the synthesis of multi-walled nanotubes (MWNT) filled with nanowires of Ni/ternary Zr based hydrogen storage alloy has been illustrated. We also demonstrate the generation of CO-free hydrogen by methane decomposition over alloy hydride catalyst. The present work also highlights the formation of single-walled nanotubes (SWNT) and MWNTs at varying process conditions. These carbon nanostructures have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), Energy dispersive X-ray analysis (EDX) and Raman spectroscopy. This new approach overcomes the existing multi-step process limitation, with possible impact on the development of future fuel cell, nano-battery and hydrogen sensor technologies
    corecore